
Nick Lloyd Page 1 10/26/2012

ODINLevel1services.doc

Odin-OSIRIS
Level 1 Services

REFERENCE MANUAL

Version: 2.47
Date: October 26, 2012
Author: Nick Lloyd.

 Nick Lloyd Page 2 10/26/2012

Page Index
Page Index .. 2
Odin-OSIRIS Level 1 API Reference .. 5

Initialization Methods ... 5
Attitude Database Methods ... 5
Attitude Helper Methods ... 5
Odin STW Conversion methods ... 5
Measurement Database methods ... 6
CDB Processing Functions ... 6
Structures and Enumerations .. 6

OSIRIS Level 1 API Functions .. 7
AngleToOrbitalPlane ... 8
AngleToTangentHorizon .. 9
BlankOutRadiationHitPixels ... 10
CDBGen_Molecule_CrossSection .. 11
CDBGen_OS_DarkCurrent .. 13
CDBGen_OS_FlatFieldResponsivity .. 14
CDBGen_OS_InternalScatter .. 16
CDBGen_OS_PointSpread ... 17
CDBGen_OS_PolarizedResponsivity ... 18
CDBGen_OS_ReferenceSpectrum .. 20
CDBGen_OS_Wavelength ... 22
CDBGen_OS_XsectionFlatField .. 24
CFToECI ... 25
ECIPlanetaryBody .. 27
ECIToGEO .. 28
ECIToGeodetic .. 29
ECItoOrbitalPlane .. 30
GeodeticToECI .. 31
GeodeticToGEO ... 32
GEOToECI .. 33
GEOToGeodetic ... 34
GetAltitudeError .. 35
GetCFUnitVector .. 37
GetDataBetweenTimes ... 38
GetFOVSize .. 40
GetInstrumentXandYECI ... 41
GetLevel1Version .. 43
GetOdinPosition ... 44
GetOdinVelocity .. 45
GetOperatingMode [Not Properly Implemented] .. 46
GetOrbitNumber .. 47
GetOrbitStartAndEndTimes ... 48
GetOsirisEcmwf ... 49
GetOSSlitCurvature ... 50
GetPixelCFUnitVector (Deprecated) .. 51
GetPixelCFUnitVectorExt ... 52
GetPlanetInFOV ... 54
GetPlanetInInstrumentFOV ... 56
GetScanData... 58

 Nick Lloyd Page 3 10/26/2012

GetScanDiagnostics ... 60
GetScanInfo ... 61
GetScanNumber .. 62
GetScanStartAndEndTimes ... 63
GetScienceProgram [Not properly Implemented] ... 64
GetSolarAngles ... 66
GetStarsInFOV .. 68
GetStarsInInstrumentFOV .. 70
GetUVPSF ... 72
InitializeLevel1Services .. 74
LoadMjdOS ... 75
LoadOrbitOS ... 76
LoadScanOS ... 78
LocateOrbitFile .. 79
LOSEntrancePoints .. 81
LOSTangentPoint ... 83
OrbitalPlanetoECI .. 84
OSIRISAvgTemperature ... 85
OSSolarAngles .. 86
OSTangentPoint .. 87
ReleaseScanData ... 88
StwLocateResetEpoch .. 89
StwToUtc.. 90
StwUsesFixedResetEpoch ... 91
UninitializeLevel1Services ... 92

OSIRIS LEVEL 1 API Structures .. 93
Spectrograph and IR Data Product History: Audit Field Values 94
Base Data Types ... 95
CFVECTOR, Spacecraft Control Frame .. 96
ECIVECTOR, Earth Centered Inertial Reference Frame 97
GEOVECTOR, Geographic Earth Centered Reference Frame 98
enum ECI_REFERENCE_FRAME ... 99
enum ODIN_INSTRUMENT .. 100
enum ODIN_POINTING_FRAME ... 101
enum PLANETARY_BODY .. 103
GEODETIC_COORD .. 104
IR_L1 ... 105
Modified Julian Date ... 108
OS_L0 .. 109
OS_L1 .. 113
ODIN_SCAN_DIAGNOSTICS .. 118
ODIN_SCAN_ENTRY ... 120
OSIRIS_ECMWF .. 122
QUATERNION .. 124
ONYX_VERSION_STRUCT ... 125

OSIRIS LEVEL 1 API INFORMATION .. 126
Required Environment Variables .. 127
Software Installation .. 128
Software Usage ... 129
Odin/OSIRIS Level 1 Database Overview .. 130
Ephemeris Calculations .. 132

Source Code Control ... 134
Areas still requiring definition or clarification .. 135

 Nick Lloyd Page 4 10/26/2012

Document Update History ... 136
Version 1.4 ... 136
Version 1.5 ... 136
Version 1.6 ... 136
Version 1.7 ... 136
Version 1.8 ... 136
Version 1.9 ... 137
Version 2.0 ... 137
Version 2.1 ... 137
Version 2.2 ... 137
Version 2.3 ... 137
Version 2.4 ... 137
Version 2.5 ... 137
Version 2.6 ... 137
Version 2.7 ... 138
Version 2.8 ... 138
Version 2.9 ... 138
Version 2.10 ... 138
Version 2.11 ... 138
Version 2.12 ... 138
Version 2.13 ... 138
Version 2.14 ... 138
Version 2.15 ... 138
Version 2.16 ... 138
Version 2.17 ... 138
Version 2.18 ... 139
Version 2.19 ... 139
Version 2.20 ... 139
Version 2.21 ... 139

 Nick Lloyd Page 5 10/26/2012

Odin-OSIRIS Level 1 API Reference

Initialization Methods
GetLevel1Version Fetch the version string of this code

InitializeLevel1Services Initialize the OSIRIS level 1 Services

UninitializeLevel1Services Uninitialize the OSIRIS level 1 Services

Attitude Database Methods
AngleToOrbitalPlane Inclination of a vector to orbital plane.

AngleToTangentHorizon Inclination of vector to tangent horizon

ECIPlanetaryBody Get ECI position of a planetary body (Sun, Moon…)

GetCFUnitVector Get instrument unit vector in Odin Control Frame

GetFOVSize Get the size of an instrument’s Field of View

GetInstrumentXandYECI Get instrument X and Y coordinate in ECI frame

GetOdinPosition Get ECI location of Odin

GetOdinVelocity Get ECI velocity of Odin

GetOrbitNumber Get the satellite orbit number at a given UTC

GetOrbitStartAndEndTimes Get the start and end times of a specific orbit

GetPixelCFUnitVector Get pixel’s pointing vector in ODIN control Frame

GetPlanetInInstrumentFOV See if a planet/moon is in an instrument’s field of

view

GetPlanetInFOV See if a planet/moon is in the field of view

GetScanNumber Get the satellite scan number at any instant

GetScanInfo Get information about a particular scan

GetScanStartAndEndTimes Get the start and end time of a specific scan

GetSolarAngles Get the appropriate SZA, SAA and SSA

GetStarsInFOV Get the list of stars in arbitrary field of view

GetStarsInInstrumentFOV Get stars in the instrument field of view

LOSEntrancePoints Calculate LOS intersection points at given height

LOSTangentPoint Calculate line-of-sight tangent point

Attitude Helper Methods
CFToECI Convert a CF vector to an ECI vector

GetAttitudeError Get altitude error in attitude solution.

ECIToGEO Convert ECI to Geographic

ECIToGeodetic Convert ECI to Geodetic coordinates

ECItoOrbitalPlane Convert ECI cords to orbital plane coords

GeodeticToECI Convert Geodetic coordinates to ECI coordinates

GeodeticToGEO Convert Geodetic to Geographic

GEOToECI Convert Geographic to ECI

GEOToGeodetic Convert Geographic to Geodetic coordinates

OrbitalPlanetoECI Convert orbital plane coords to ECI

Odin STW Conversion methods
StwLocateResetEpoch Convert STW using a STW epoch derived from a

given date.

StwToUtc Convert the Odin STW to UTC

StwUsesFixedResetEpoch Convert STW using a user-specified Odin STW epoch

 Nick Lloyd Page 6 10/26/2012

Measurement Database methods
GetDataBetweenTimes Get all level 1 data between two times

GetOperatingMode Get an instrument’s operational mode at a given

time

GetScanData Get all level 1 data for an altitude scan

GetOsirisEcmwf Get the Ecmwf data for a requested mjd

GetScienceProgram Get the Odin science program at a given time

LocateOrbitFile Locates an orbit file on the users machine

ReleaseScanData Release the collection acquired with GetScanData

or GetDataBetweenTimes

CDB Processing Functions
CDBGen_Molecule_CrossSection Get cross-section data for a molecule

CDBGen_OS_DarkCurrent Get/apply Dark Current correction for OS

spectra

CDBGen_OS_FlatFieldResponsivity Get/apply non-polarized responsivity to OS

spectra

CDBGEN_OS_InternalScatter Get the value of gamma for internal scattering.

CDBGen_OS_PointSpread Get the point spread function of each pixel

CDBGen_OS_PolarizedResponsivity Get polarized responsivity for OS spectra

CDBGen_OS_ReferenceSpectrum Get the OS reference spectrum

CDBGen_OS_Wavelength Get wavelength of each pixel in OS spectra

CDBGEN_OS_XsectionFlatField Get non-polarized responsivity for spatial

column on CCD

Structures and Enumerations
Base Data Types Description of the base data types

CFVECTOR Spacecraft Control Frame coordinate

ECIVECTOR Earth Centered Inertial Coordinate

enum ECI_REFERENCE_FRAME Identifies different velocity reference frames

enum ODIN_INSTRUMENT The list of instruments on Odin

enum ODIN_POINTING_FRAME The list of pointing directions on Odin

enum PLANETARY_BODY Planetary bodies in solar system

GEODETIC_COORD A Geodetic coordinate

IR_L1 The OSIRIS IR level 1 data structure

Modified Julian Date Modified Julian Date description

OS_L0 The OSIRIS OS level 0 data structure.

OS_L1 The OSIRIS OS level 1 data structure.

QUATERNION Spacecraft rotation quaternion

ONYX_VERSION_STRUCT Software versioning structure

 Nick Lloyd Page 7 10/26/2012

OSIRIS Level 1 API Functions

 Nick Lloyd Page 8 10/26/2012

AngleToOrbitalPlane
Retrieves the angle of vector to the ODIN orbital plane at the instant given by mjd.

HRESULT AngleToOrbitalPlane(

double mjd,

const ECIVECTOR* vector,

double* angle

);

IDL> angle = L1->ANGLETOORBITALPLANE(mjd, ecivector)

MAT> [angle] = AngleToOrbitalPlane(L1, mjd, vector);

Parameters

mjd

The instant, expressed as a Modified Julian Date, at which the orbital plane

should be determined.

vector

The vector which is inclined to the orbital plane. It must be expressed in ECI.

angle

Returns the inclination of vector to the orbital plane in degrees.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 9 10/26/2012

AngleToTangentHorizon
Calculates the angle between vector and the “horizontal” horizon at the tangent point

defined by mjd and lookvector.

HRESULT AngleToTangentHorizon(

double mjd,

const ECIVECTOR* lookvector,

const ECIVECTOR* vector,

double* angle

);

IDL> angle = L1->ANGLETOTANGENTHORIZON(mjd, lookvector, vector)

MATLAB> [angle] = AngleToTangentHorizon(L1, mjd, lookvector, vector)

Parameters

mjd

The instant, expressed as a Modified Julian Date, at which the tangent horizon

should be determined.

lookvector

The look direction from the spacecraft position at the instant given by mjd. This

is used to determine the tangent point. It must be expressed in ECI coordinates.

vector

The vector which is inclined to the tangent horizon. It must be expressed in ECI

coordinates.

angle

Returns the inclination of vector to the tangent horizon in degrees.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 10 10/26/2012

BlankOutRadiationHitPixels
Looks up all of the radiation hits for the given exposure and blanks out any data

values and sets any flag

HRESULT BlankOutRadiationHitPixels (

OS_L1* os,

double* data,

nxBYTE* flags

);

IDL> N/A

MAT> [newflags, ok] = BlankOutRadiationHitPixels(L1, os, idx, flags)

Parameters

os

Pointer to the OS_L1 header of the desired exposure. The MATLAB version uses

variable idx to index the specific exposure record.

data

Pointer to the array of data (only 1353x1 elements currently supported). The

code will set the value of radiation hit pixels to zero. This parameter may be

NULL.

flags

Pointer to the array of pixel exception flags (only 1353x1 elements currently

supported). The code will set the OSPIX_FLAG_SEVERE and

OSPIX_FLAG_RADIATIONHIT bits in each pixel with a radiation hit. This

parameter may be NULL.

Returns

Return S_OK if success else E_FAIL or other COM error codes

Return to Odin Level 1 Services

 Nick Lloyd Page 11 10/26/2012

CDBGen_Molecule_CrossSection
Retrieves the cross-section data for a given molecule as a function of wavelength

and temperature. The function can retrieve the cross-section data either at full

resolution or convolved with the spectrograph instrument profile.

HRESULT CDBGen_Molecule_CrossSection(

const char* molecule,

nxBOOL get_highres,

double** xsection,

double** wavelength,

double** temperature,

int* numwavelen,

int* numtemperature

);

IDL> L1->CDBGEN_MOLECULE_CROSSSECTION, molecule,

get_highres,

xsection,

wavelength,

temperature

MAT> [xsection,

 wavelength,

 temperature] = CDBGen_Molecule_CrossSection(L1,

molecule,

get_highres)

Parameters

molecule

The name of the molecule required. Valid names are “o3”, “no2”, “o4”, “bro”,

and “oclo”. Other species may be added at a later date

get_highres

If nxTRUE then return a high resolution spectrum. If nxFALSE then return a

spectrum that has been convolved with the instrument profile.

xsection

Returns a pointer to the molecules cross section data as a function of wavelength

and temperature. The wavelength data extend from 270 nm to 820 nm in 0.1 nm

intervals. The temperature range depends upon the species. The data are

returned as a two dimensional array double(numwavelen x

numtemperature). The data are organized as arrays of wavelength data. Each

set of wavelength data is *numwavelen elements long. There are

*numtemperature sets of wavelength data. The array is internally cached

inside the Level1 services and is guaranteed to remain valid until the Level1

services are uninitialized. This parameter must not be NULL.

wavelength

Returns the wavelengths of the cross-section data. The data are returned as a

pointer to an array of double[*numwavelen]. The array contains the

 Nick Lloyd Page 12 10/26/2012

wavelength in nanometers of each point in the cross-section data. The array is

internally cached inside the Level1 services and is guaranteed to remain valid

until the Level1 services are uninitialized. This parameter must not be NULL.

temperature

Returns the temperature of each set of wavelength data in the cross-section

array. The temperature data are returned as a pointer to an array of

double[*numtemperature]. The array contains the temperature in Kelvin of

each set of wavelength data. The array is internally cached inside the Level1

services and is guaranteed to remain valid until the Level1 services are

uninitialized. This parameter must not be NULL.

numwavelen

Returns the number of points in each set of wavelength data in the cross-section

data. It is the “fastest” changing index for the two dimensional cross-section

array. This parameter must not be NULL.

numtemperature

Returns the number of temperature points in the cross-section data. It is the

“slowest” changing index for the two dimensional cross-section array. This

parameter must not be NULL.

Returns

Returns E_FAIL

Return to Odin Level 1 Services

 Nick Lloyd Page 13 10/26/2012

CDBGen_OS_DarkCurrent
Retrieves the dark current correction applicable for the given spectrum. The dark

current returned are the values subtracted from the Level 0 data product. I.E. the

values include adjustments for the number of rows read out and for the exposure

time. To obtain the dark current signal subtracted from the level 1 product (in level 1

units) you must divide these values by the number of readout rows (always 32 for

normal scientific data) and by the exposure time. Then you must multiply by the flat-

field correction.

HRESULT CDBGen_OS_DarkCurrent(

OS_L1* spectrum,

double** dcbuffer,

double** dcerror

);

IDL> L1->CDBGEN_OS_DARKCURRENT, spectrum, dcbuffer, dcerror

MAT> [dcbuffer,dcerror] = CDBGen_OS_DarkCurrent(L1, spectrum, index)

Parameters

spectrum

Pointer to the OS data. Header information in spectrum is used to determine the

appropriate dark current numbers associated with this spectrum. In Matlab

spectrum is a 1x1 structure with fields. Each field is an array of numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

dcbuffer

Returns the dark-current data in DN as a pointer to a contiguous chunk of

memory which is a 2D array of [numcols x numrows]. Where numcols and

numrows are the fields in the OS_L1 spectrum header. If there is an error it will

return a NULL pointer. The pointer is guaranteed to remain valid until the next

call to CDBGen_OS_DarkCurrent or until UnInitializeLevel1Services is

called, whichever comes first. The returned dark current accounts for the

exposure time and read-out binning.

dcerror

Same as dcbuffer except it points to the error in the estimate of the dark-current

data in DN/second. The pointer may return NULL..

Returns

S_OK, All bits 0. Calibration properly executed

Bit 0 = 1. Dark current was extrapolated

Bit 1 = 2. Strap temperature was coarsely estimated

E_FAIL, internal error, calibration failed.

Return to Odin Level 1 Services

 Nick Lloyd Page 14 10/26/2012

CDBGen_OS_FlatFieldResponsivity
Retrieves the non-polarized response applicable to the given OS spectrum. The non-

polarized correction will convert the OS CCD A/D units expressed in DN/second/pixel

to photons/(cm2 nm s steradian)/DN.

The flat field data should be applied to data which has been corrected to

DN/pixel/second, i.e. all on-chip and off-chip binning has been removed.

Flat field data is not available for 143 row or 286 row readout modes and the

function will fail.

HRESULT CDBGen_OS_FlatFieldResponsivity (

OS_L1* spectrum,

double** flatbuffer,

double** flaterror

);

IDL> L1->CDBGEN_OS_FLATFIELDRESPONSIVITY, spectrum,

flatbuffer,

flaterror

MAT> [flatbuffer,

 flaterror] = CDBGen_OS_FlatFieldResponsivity(L1,spectrum,index)

Parameters

spectrum

Pointer to the OS spectrum. Header information in spectrum is used to

determine the non-polarized response associated with this spectrum. In Matlab

spectrum is a 1x1 structure with fields. Each field is an array of numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

flatbuffer

Returns the flat-field data as a pointer to a contiguous chunk of memory which is

a 2D array of [numcols x numrows]. Where numcols and numrows are the fields in

the OS_L1 spectrum header. If there is an error it will return a NULL pointer.

The pointer is guaranteed to remain valid until the next call to

CDBGen_OS_FlatFieldResponsivity or until UnInitializeLevel1Services is

called, whichever comes first.

flaterror

Same as flatbuffer except it points to the error in the estimate of the flat-field

data. The pointer may return NULL..

Returns

Return S_OK if the flat field correction was generated by interpolating the absolute

calibration table. Returns S_FALSE if a flat field correction was generated by

extrapolating beyond the end of the absolute calibration table. Returns E_FAIL or

other COM error codes if there are errors.

 Nick Lloyd Page 15 10/26/2012

Returns

S_OK, All bits 0. Calibration properly executed

Bit 0 = 1. absolute calibration was extrapolated

E_FAIL, internal error, calibration failed.

Return to Odin Level 1 Services

 Nick Lloyd Page 16 10/26/2012

CDBGen_OS_InternalScatter
Retrieves the value of gamma used for internal scattering.

HRESULT CDBGen_OS_InternalScatter (

double mjd,

double* gamma,

double* gammaerr

);

IDL> L1->CDBGEN_OS_InternalScatter, mjd, gamma, gammaerr

MAT> [gamma, gammaerr] = CDBGen_OS_InternalScatter(L1, mjd)

Parameters

mjd

The modified Julian date at which the value of gamma is required

gamma

Returns the value of gamma appropriate for the given.

gammaerr

Returns the error in gamma.

Returns

Return S_OK if success else E_FAIL or other COM error codes. The returned values

of gamma and gammaerr are undefined if the routines fails.

Return to Odin Level 1 Services

 Nick Lloyd Page 17 10/26/2012

CDBGen_OS_PointSpread
Retrieves the nominal full width at half-maximum (fwhm) value for the Gaussian

point spread function of each pixel in the given spectra. The function is centred over

the physical centre of each pixel and is expressed in nanometers. The level 1 data

processing chain will guarantee that a change in the nominal point spread function

will not occur during a satellite scan as this unduly complicates level 2 processing.

HRESULT CDBGen_OS_PointSpread(

OS_L1* spectrum,

double** instpsf,

double** error,

);

IDL> L1->CDBGEN_OS_POINTSPREAD, spectrum, instpsf, error

MAT> [instpsf,error] = CDBGen_OS_PointSpread(L1, spectrum, index)

Parameters

spectrum

Pointer to the OS spectrum. Header information in spectrum is used to

determine the appropriate fwhm for each pixel in this spectrum. In Matlab

spectrum is a 1x1 structure with fields. Each field is an array of numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

instpsf

Returns the fwhm in nanometers as a pointer to a contiguous chunk of memory

which is a 2D array of [numcols x numrows]. Where numcols and numrows are the

fields in the OS_L1 spectrum header. If there is an error it will return a NULL

pointer. The pointer is guaranteed to remain valid until the next call to

CDBGen_OS_PointSpread or until UnInitializeLevel1Services is called,

whichever comes first.

error

Same as instpsf except it points to the error in the estimate of the fwhm. The

pointer may return NULL..

Returns

Returns S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 18 10/26/2012

CDBGen_OS_PolarizedResponsivity
Retrieves the g12 and g13 polarization components applicable to the given OS

spectrum. These coefficients are explained in the paper by McLinden et al. The

parallel and perpendicular polarizations are defined as parallel and perpendicular to

the spectrograph slit. The polarized response arrays are expressed as non

dimensional units (between 0 and 1).

HRESULT CDBGen_OS_PolarizedResponsivity (

OS_L1* spectrum,

double** g12,

double** g13,

double** g12error,

double** g13error,

);

IDL> L1->CDBGEN_OS_POLARIZEDRESPONSIVITY, spectrum,

g12,

g13,

g12error,

g13error

MAT> [g12,

 g13,

 g12error,

 g13error] = CDBGen_OS_PolarizedResponsivity(L1, spectrum, index)

Parameters

spectrum

Pointer to the OS spectrum. Header information in spectrum is used to

determine the polarized responsivities associated with this spectrum. In Matlab

spectrum is a 1x1 structure with fields. Each field is an array of numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

g12

Returns the g12 polarized response as a pointer to a contiguous chunk of

memory which is a 2D array of [numcols x numrows]. Where numcols and

numrows are the fields in the OS_L1 spectrum header. If there is an error it will

return a NULL pointer. The pointer is guaranteed to remain valid until the next

call to CDBGen_OS_PolarizedResponsivity or until

UnInitializeLevel1Services is called, whichever comes first.

g13

Same as g12 except it returns the g13 responsivity.

g12error

Same as g12 except it points to the error in the estimate of the g12 polarized

responsivity data. The pointer may return NULL.

g13error

 Nick Lloyd Page 19 10/26/2012

Same as g12 except it points to the error in the estimate of the g13 polarized

responsivity data. The pointer may return NULL..

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Reference

C.A. McLinden, J. C. McConnell, K. Strong, I. C. McDade, R. L. Gattinger, R. King, B.

Solheim, E.J. Llewellyn, W.J.F. Evans: The impact of the OSIRIS grating efficiency on

radiance and trace-gas retrievals, Can J. Phys. 78, 1-17, 2000

Return to Odin Level 1 Services

 Nick Lloyd Page 20 10/26/2012

CDBGen_OS_ReferenceSpectrum
Retrieves the zero air mass, or top of the atmosphere. The user can choose to

retrieve the solar spectrum convolved with the OSIRIS point spread function at the

1353 wavelengths of OSIRIS or a high resolution solar spectrum at 0.001 nm

resolution from 250 nm to 830 nm (580001 data points).

NOTE THIS FUNCTION WAS CHANGED ON 2006-07-27 **

HRESULT CDBGen_OS_ReferenceSpectrum(

nxBOOL get_highres,

double** wavelengths,

double** refspec,

int* numpts

);

IDL> L1->CDBGEN_OS_REFERENCESPECTRUM, get_highres,

wavelengths,

refspect

MAT>[refspect,wavelengths]= CDBGen_OS_ReferenceSpectrum(L1,get_highres)

Parameters

get_highres

If nxTRUE then return a high resolution spectrum. If nxFALSE then return a

spectrum that has been convolved with the instrument profile.

wavelengths

Returns a pointer to an array of double[*numpts]. The array contains the

wavelength in nanometers of each point in the reference spectrum. The array is

internally cached inside the Level1 services and is guaranteed to remain valid

until the next call to CDBGen_OS_ReferenceSpectrum. This parameter must not

be NULL.

refspec

Returns a pointer to an array of double[*numpts]. The array contains the solar

irradiance at the top of the atmosphere for each of the wavelength specified in

array wavelengths. The spectrum is specified in units of

photons/cm2/sec/steradian/nm. The array is internally cached inside the Level1

services and is guaranteed to remain valid until the next call to

CDBGen_OS_ReferenceSpectrum. This parameter may not be NULL.

numpts

Returns the number of points the arrays pointed to wavelengths and refspect.

The parameter will return 0 if there is an error in the function.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

References

 Nick Lloyd Page 21 10/26/2012

Kurucz, R.L., The Solar Irradiance by Computation (see http://cfaku5.harvard.edu/

1997.

Return to Odin Level 1 Services

http://cfaku5.harvard.edu/

 Nick Lloyd Page 22 10/26/2012

CDBGen_OS_Wavelength
Retrieves the nominal wavelength assignment of each pixel in the given spectra. The

wavelength assignment will correspond to the physical centre of each pixel and is

expressed in nanometers (nm). The algorithm may account for slit curvature on the

CCD image due to optical aberration. It will not account for stretch and shift effects.

The level 1 data processing chain will guarantee that a change in the nominal

wavelength assignment will not occur during a satellite scan as this unduly

complicates level 2 processing.

HRESULT CDBGen_OS_Wavelength(

OS_L1* spectrum,

double** wavelengths,

double** widths,

double** waveerror

);

IDL> L1->CDBGEN_OS_WAVELENGTH, spectrum,

wavelengths,

widths,

waveerror

MAT> [wavelengths,

 widths,

 waveerror] = CDBGen_OS_Wavelength(L1, spectrum, index)

Parameters

spectrum

Pointer to the OS spectrum. Header information in spectrum is used to

determine the appropriate wavelength assignments for each pixel in this

spectrum. The wavelength assignment corresponds to the centre of each pixel.

In Matlab spectrum is a 1x1 structure with fields. Each field is an array of

numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

wavelengths

Returns the wavelength of the center of each pixel in nanometers as a pointer to

a contiguous array of doubles. Returns NULL if there is an error. The array is

internally cached within the Level 1 Services and is valid until the next call to

CDBGen_OS_Wavelength. The array is guaranteed to have the same size and

dimensions as the data stored in spectrum. The parameter may be NULL in which

case the data pointer is not returned.

widths

Returns the width of each pixel in nanometers as a pointer to a contiguous array

of doubles. Returns NULL if there is an error. The array is internally cached

within the Level 1 Services and is valid until the next call to

CDBGen_OS_Wavelength. The array is guaranteed to have the same size and

dimensions as the data stored in spectrum. The parameter may be NULL in which

case the data pointer is not returned.

 Nick Lloyd Page 23 10/26/2012

waveerror

Returns the error on the wavelength assignment of each pixel in nanometers as a

pointer to a contiguous array of doubles. Returns NULL if there is an error. The

array is internally cached within the Level 1 Services and is valid until the next

call to CDBGen_OS_Wavelength. The array is guaranteed to have the same

size and dimensions as the data stored in spectrum. The parameter may be NULL

in which case the data pointer is not returned.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 24 10/26/2012

CDBGen_OS_XsectionFlatField
Retrieves the non-polarized response applicable to a specific column of crosssection

data in the OS_L1 structure. The non-polarized correction will convert the OS CCD

A/D units expressed in DN/second/pixel to photons/(cm2 nm s steradian)

Flat field cross-section data is not available for 143 row or 286 row readout modes

and the function will fail.

HRESULT CDBGen_OS_XSectionFlatField (

OS_L1* spectrum,

int pixelindex,

double** flatbuffer

);

IDL> L1->CDBGEN_OS_XSECTIONFLATFIELD, spectrum,

pixelindex,

flatbuffer

MAT> [flatbuffer] = CDBGen_OS_XSectionFlatField(L1, spectrum, index)

Parameters

spectrum

Pointer to the OS spectrum. Header information in spectrum is used to

determine the non-polarized response associated with this spectrum. In Matlab

spectrum is a 1x1 structure with fields. Each field is an array of numbers.

index (Matlab only)

Index into the desired element in each field array within the OS structure.

flatbuffer

Returns the flat-field data across the slit at the specified pixel index as a

pointer to a contiguous chunk of memory. The memory is a 2D array of double

[roenumrows]. The array size, roenumrows, is derived from the roe field in the

OS_L1 header: roe 0, 1, 2 will have roenumrows set to 32, 16 or 8 respectively.

The pointer is guaranteed to remain valid until the next call to

CDBGen_OS_FlatFieldResponsivity or until UnInitializeLevel1Services is

called, whichever comes first.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 25 10/26/2012

CFToECI
Converts a unit vector specified in the spacecraft control frame to ECI reference

frame. Algorithm uses the quaternions provided by SSC attitude solution to rotate

from spacecraft control frame to ECI reference frame. Details on CFVECTOR and

ECIVECTOR are located elsewhere in this document. The user must select the

appropriate velocity reference frame. This choice applies an appropriate correction

for light aberration between the spacecraft velocity and the velocity of the chosen

reference frame. The light aberration correction is such that orthogonal vectors

before the transform will not be orthogonal after the transform. The light aberration

correction is of the order 0.1 arc minutes.

HRESULT CFToECI(

double mjd,

const CFVECTOR* cf_vector,

ECIVECTOR* eci_vector,

int refframe_id

);

IDL> eci_vector = L1->CFTOECI(mjd, cf_vector, reframe_id)

MAT> [eci_vector] = CFToECI(L1, mjd, cf_vector, reframe_id)

Parameters

mjd

The UTC time expressed as a Modified Julian Date for which the conversion is

required.

cf_vector

Pointer to the vector in the spacecraft control frame. The data are read only.

eci_vector

Returns the vector specified in the ECI coordinate system.

refframe_id

Specifies the reference frame in which the attitude should be specified, chosen

from enum ECI_REFERENCE_FRAME. This parameter is used to define the

correction for light aberration. Most users will use the value of ECI_SPACECRAFT,

which effectively disables the light aberration correction. Users requiring higher

precision should use the following guidelines. Attitude vectors used in

determining tangent altitudes, geodetic locations and ray paths should convert to

reference frame ECI_TOPOCENTRIC. Vectors used for comparison against star

catalogues and ephemerides should convert to reference frame ECI_GEOCENTRIC

Returns

Return S_OK if success. Returns S_FALSE if there was a problem in the light

aberration correction. In this special case the attitude is that observed in the

spacecraft frame which may be acceptable to the user is returned. All other errors

return E_FAIL or other COM error codes and the pointing vector is undefined.

Return to Odin Level 1 Services

 Nick Lloyd Page 26 10/26/2012

CreateOsirisEcmwfClimatologyInstance
Creates an skClimatology that uses the ECMWF values extracted and interpolated for

the OSIRIS scans primary tangent point. The climatology supports pressures

temperature and density.

HRESULT CreateOsirisEcmwfClimatologyInstance (

skClimatology** osirisclimatology

);

IDL> NotAvailable

MAT> Available as class @skClimatology_OsirisEcmwf

Parameters

osirisclimatology

Returns the desired instance of skClimatology that supports pressures density

and temperature and is derived from interpolation of ECMWF to the OSIRIS scan.

The user must call osirisclimatology->Release when finished with the object.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 27 10/26/2012

ECIPlanetaryBody
Calculates the ECI position of the requested planetary body.

HRESULT ECIPlanetaryBody(

double mjd,

int planet_id,

ECIVECTOR* pos

);

IDL> pos = L1->ECIPLANETARYBODY(mjd, planet_id, /NORMALIZE)

MAT> [pos] = ECIPlanetaryBody(L1, mjd, planet_id)

Parameters

mjd

The UTC expressed as a Modified Julian Date at which the position of the

planetary body is required.

planet_id

The id code of the required planetary body. The value is assumed to be chosen

from enum PLANETARY_BODY.

pos

Returns the ECI position of the planetary body in meters. The vector is returned

in the ECI_GEOCENTRIC velocity reference frame.

NORMALIZE

IDL Keyword. If true then return the position as a ECI unit vector.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 28 10/26/2012

ECIToGEO
Converts from ECI coordinates to Geographic (X,YZ) coordinates, this simply involves

a rotation about the Z axis based upon Sidereal time. Descriptions of ECIVECTOR

and GEOVECTOR are given elsewhere in this document.

HRESULT ECIToGEO(

double anmjd,

const ECIVECTOR* eci_position

GEOVECTOR* geo_position,

);

IDL> geo_position = L1->ECIToGEO(anmjd, eci_position)

MAT> [geo_position] = ECIToGEO(L1, mjd, eci_position)

Parameters

anmjd

The UTC expressed as a Modified Julian Date associated with the point. This is

required to calculate sidereal time.

eci_position

The location of a point expressed in ECI coordinates (meters).

geo_position

The location of the same point expressed in geographic coordinates

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 29 10/26/2012

ECIToGeodetic
Converts the ECI coordinates of a point to geodetic coordinates. Descriptions of

ECIVECTOR and GEODETIC_COORD are given elsewhere in this document.

HRESULT ECIToGeodetic(

double anmjd,

const ECIVECTOR* eci_position,

GEODETIC_COORD* geodetic_pos

);

IDL> geodetic_pos = L1->ECIToGeodetic(anmjd, eci_position)

MAT> [geodetic_pos] = ECIToGeodetic(L1, mjd, eci_position)

Parameters

anmjd

The UTC expressed as a Modified Julian Date associated with the point. This is

required to calculate sidereal time.

eci_position

The location of a point expressed in ECI coordinates (meters).

geodetic_pos

The location of the same point expressed in geodetic coordinates (latitude,

longitude and height in km).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 30 10/26/2012

ECItoOrbitalPlane
Converts the ECI coordinates of a point to orbital plane coordinates. The orbital

plane coordinates are returned as a GEODETIC_COORD but the caller must be aware

that they are not actual geodetic coordinates.

HRESULT ECItoOrbitalPlane(

double anmjd,

nxBOOL updateplane,

const ECIVECTOR* eci_position,

GEODETIC_COORD* geodetic_pos

);

IDL> geodetic_pos = L1->ECItoOrbitalPlane(anmjd, eci_position,

 updateplane=updateplane)

MAT> [geodetic_pos]= ECItoOrbitalPlane(L1, anmjd,

 updateplane,

 eci_position)

Parameters

anmjd

The UTC expressed as a Modified Julian Date used to calculate the orbital plane.

This value is only used if updatereferenceplane is true or if the plane is internally

undefined. The value is also used to determine the number of revolutions that

have occurred since the epoch that defines the orbital plane.

updateplane

If nxTRUE then update the reference orbital plane using the ascending node prior

to time anmjd. If nxFALSE then don’t update the orbital plane. This is a keyword

in the IDL implementation.

eci_position

The location of a point expressed in ECI coordinates (meters).

geodetic_pos

The location of the same point expressed in orbital plane coordinates: geocentric

latitude, longitude and geocentric radius in km. In orbital plane coordinates, X

points to the ascending node in the equatorial plane. Z is the spin axis of the

orbit perpendicular to the orbital plane (towards sun for ODIN) and Y is

perpendicular to X and Z. Longitude is the angular distance from the ascending

node in degrees. Latitude is the angular distance in degrees from the orbital

plane and height is the geocentric radius in kilometers. The longitude is adjusted

to account for multiple revolutions as determined by anmjd

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 31 10/26/2012

GeodeticToECI
Converts the geodetic coordinates of a point to ECI coordinates. Descriptions of

ECIVECTOR and GEODETIC_COORD are given elsewhere in this document.

HRESULT GeodeticToECI(

double anmjd,

const GEODETIC_COORD* geodetic_pos,

ECIVECTOR* eci_position

);

IDL> eci_position = L1->GeodeticToECI(anmjd, geodetic_pos)

MAT> [eci_position] = GeodeticToECI(L1, anmjd, geodetic_pos)

Parameters

anmjd

The UTC expressed as a Modified Julian Date associated with the point. This is

required to calculate sidereal time.

geodetic_pos

The location of a point expressed in geodetic coordinates (latitude, longitude and

height in km).

eci_position

The location of the same point expressed in ECI coordinates (meters).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 32 10/26/2012

GeodeticToGEO
Converts the geodetic coordinates of a point to Geographic X,Y,Z coordinates.

Descriptions of GEOVECTOR and GEODETIC_COORD are given elsewhere in this

document.

HRESULT GeodeticToGEO(

const GEODETIC_COORD* geodetic_pos,

GEOVECTOR* geo_position

);

IDL> geo_position = L1->GeodeticToGEO(geodetic_pos)

MAT> [geo_position] = GeodeticToGEO(L1, geodetic_pos)

Parameters

geodetic_pos

The location of a point expressed in geodetic coordinates (latitude, longitude and

height in km).

geo_position

The location of the same point expressed in Geographic coordinates (meters).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 33 10/26/2012

GEOToECI
Converts from Geographic (X,Y,Z) coordinates to ECI coordinates, this simply

involves a rotation about the Z axis based upon Sidereal time. Descriptions of

ECIVECTOR and GEOVECTOR are given elsewhere in this document.

HRESULT GEOToECI(

double anmjd,

const GEOVECTOR* geo_position,

ECIVECTOR* eci_position

);

IDL> eci_position = L1->GEOToECI(anmjd, geo_position)

MAT> [eci_position] = GEOToECI(L1, anmjd, geo_position)

Parameters

anmjd

The UTC expressed as a Modified Julian Date associated with the point. This is

required to calculate sidereal time.

geo_position

The location of the a point expressed in geographic coordinates

eci_position

The location of the same point expressed in ECI coordinates (meters).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 34 10/26/2012

GEOToGeodetic
Converts Geographic (X,Y,Z) coordinates of a point to equivalent geodetic.

Descriptions of GEOVECTOR and GEODETIC_COORD are given elsewhere in this

document.

HRESULT GEOToGeodetic(

const GEOVECTOR* geo_position

GEODETIC_COORD* geodetic_pos,

);

IDL> geodetic_pos = L1->GEOToGeodetic(geo_position)

MAT> [geodetic_pos] = GEOToGeodetic(L1, geo_position)

Parameters

geo_position

The location of a point expressed in Geographic coordinates (meters).

geodetic_pos

The location of the same point expressed in geodetic coordinates (latitude,

longitude and height in km).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 35 10/26/2012

GetAltitudeError
Retrieves the error in the altitude pointing of the attitude system in arc-minutes. The

value is taken from the SSC attitude solution. This function is only available in

Version 1.14 and later (i.e. installations after 2006-11-15).

HRESULT GetAltitudeError (

double mjd,

double* arcminute_error

);

IDL> arcminute_error = L1->GETALTITUDEERROR(mjd)

MAT> [arcminute_error] = GetAltitudeError(L1, mjd)

Parameters

mjd

The UTC time expressed as a Modified Julian Date at which the altitude error is

required.

arcminute_error

Returns the error in the altitude direction of the attitude solution in arc minutes.

One arc minute of angle corresponds to approximately 1 km of altitude at the

tangent point for the OSIRIS geometry.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 36 10/26/2012

 Nick Lloyd Page 37 10/26/2012

GetCFUnitVector
Retrieves the unit vector of the specified instrument axis in the spacecraft Control

Frame. The estimate is for the primary axis/boresight of the instrument and does

not account for pointing vector adjustments for the individual pixels on instrument

detectors.

HRESULT GetCFUnitVector(

double mjd,

int odin_pointing_frame_id,

CFVECTOR* att,

);

IDL> att = L1->GETCFUNITVECTOR(mjd, odin_pointing_frame_id)

MAT> [att] = GetCFUnitVector(L1, mjd, odin_pointing_frame_id frame)

Parameters

mjd

The UTC time expressed as a Modified Julian Date at which the control frame unit

vector is required.

odin_pointing_frame_id

An integer assumed to be selected from enum ODIN_POINTING_FRAME which

identifies the required axis.

att

Returns the unit vector of the desired axis in the spacecraft control frame

coordinate system. If there was an error then it sets all components to zero.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 38 10/26/2012

GetDataBetweenTimes
Retrieve all of the scientific data for a specific instrument between the specified

times. This function will retrieve all data between the specified times. The user may

release the collection of data through a call to ReleaseScanData(). The total size

of virtual memory is the only limitation on the amount of data that may be held in

memory at any instant.

HRESULT GetDataBetweenTimes(

double start_mjd,

double end_mjd,

int instrument,

const char* levelstr,

IOnyxCollection** collection

);

IDL> data =L1->GETDATABETWEENTIMES(start_mjd, end_mjd, instrument,

levelstr,

collection)

MAT> [data, collection] = GetDataBetweenTimes(L1,

 start_mjd,

 end_mjd,

 instrument,

 levelstr)

Parameters

start_mjd

The initial UTC expressed as a Modified Julian Date at which to collect data.

end_mjd

The final UTC expressed as a Modified Julian Date at which to collect data.

instrument

The number of the instrument for which data are requested. This number is

assumed to be chosen from enum ODIN_INSTRUMENT.

levelstr

A string used to identify the level required. Typical examples are “1A” for level

1A and “1B” for level 1B. This string is used when the level 1 filename is

calculated.

collection

Returns a pointer to a new IOnyxCollection object which contains all of the

records between start_mjd and end_mjd. The records will be guaranteed to be in

ascending order in time.

C/C++: The user must call collection->Release() or ReleaseScanData() to

release memory and resources associated with the collection.

IDL and Matlab: this variable is an object that must be kept alive if the user plans

to access any of the IOnyxArray data fields of the structure data using

 Nick Lloyd Page 39 10/26/2012

IOnyxArrayGetData. The resources associated with this object should be

released by calling

IDL> status = collection->Release()

MAT> status = Release(collection);

data

IDL: returns an array of structures extracted from the underlying collection.

Matlab: returns a 1x1 structure with a set of field arrays extracted from the

underlying collection

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 40 10/26/2012

GetFOVSize
Returns the nominal field of view for a given instrument. This does not attempt to

account for details such as vignetting. Its primary goal is to provide a field of view

for functions that need to locate nearby astronomical bodies such as the moon,

planets and stars.

HRESULT GetFOVSize(

int odin_instrument_id,

double* fovy,

double* fovz

);

IDL> fov =L1->GETFOVSIZE(odin_instrument_id)

MAT> [fov] = GetFOVSize(L1, odin_instrument_id)

Parameters

odin_instrument_id

The number of the instrument for which data are requested. This number is

assumed to be chosen from enum ODIN_INSTRUMENT.

fovy

Returns the nominal field of view in the instrument Y direction in degrees. The

instrument Y direction is very close to the Odin Control Frame Y direction. The Y

direction is normally directed from the spacecraft towards the ground. Y would

normally be considered the height direction (going from high altitude to low

altitude). Y is anti-parallel to the IR linear arrays. (IDL and Matlab): This is the

second element of the returned array.

fovz

Returns the nominal field of view in the instrument Z direction in degrees. The

instrument Z direction is very close to the Odin Control Frame Z direction. The

CF Z direction is perpendicular to the solar panels and is directed away from the

Sun. It is nominally anti-parallel to the OSIRIS slit commonly called the “spatial”

direction. IDL and Matlab: This is the first element of the returned array

Returns

Return S_OK if success else E_FAIL or other COM error codes. IDL and Matlab return

a double[2] array specifying the field of view.

Return to Odin Level 1 Services

 Nick Lloyd Page 41 10/26/2012

GetInstrumentXandYECI
Returns the X and Y unit vectors of the specified instrument in the ECI coordinate

frame. The instrument X axis is defined as the instrument boresight and is very

close to the satellite Control Frame X axis. The Y axis is the instrument’s natural Y

axis: perpendicular to the instrument X axis and close to the satellite Control Frame

Y axis. The routine may apply a correction for the aberration of light and can

transform to any of the coordinate systems specified in refframe_id.

HRESULT GetInstrumentXandYECI(

double mjd,

int odin_instrument_id,

ECIVECTOR* instrumentx,

ECIVECTOR* instrumenty,

int refframe_id,

);

IDL> L1->GETINSTRUMENTXANDYECI, mjd,

odin_instrument_id,

instrumentx,

instrumenty,

reframe_id

IDL> [instrumentx,

 instrumenty] = GetInstrumentXandYECI(L1,

 mjd,

 odin_instrument_id,

 reframe_id)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

odin_instrument_id

The number that identifies the requested instrument. This value should be

chosen from enum ODIN_INSTRUMENT.

instrumentx

Returns the instrument’s X axis expressed as an ECI unit vector. If there is an

error then the vector is set to [0,0,0]

instrumenty

Returns the instrument’s Y axis expressed as an ECI unit vector. If there is an

error then the vector is set to [0,0,0]. Please note that the X and Y vectors will

generally not be perpendicular after the light aberration correction.

refframe_id

Specifies the reference frame of the ECI unit vectors. Most users will use

ECI_SPACECRAFT. Precision calculations can choose from enum

ECI_REFERENCE_FRAME. The value determines the correction for light

aberration due to the spacecraft motion.

 Nick Lloyd Page 42 10/26/2012

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Comments

The instrument pointing vectors can also be retrieved using GetCFUnitVector

followed by a call to CFToECI.

Return to Odin Level 1 Services

 Nick Lloyd Page 43 10/26/2012

GetLevel1Version

HRESULT GetLevel1Version (

const char** version

);

IDL> version = L1->GETLEVEL1VERSION()

MAT> [version] = GetLevel1Version(L1)

Parameters

version

Returns a pointer to a NULL terminated string that describes the current version

of the OSIRIS Level 1 services. The pointer will remain valid until a call to

UninitializeLevel1Services.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 44 10/26/2012

GetOdinPosition
Fetch the best estimate ECI X,Y,Z position of Odin using any adjustments and/or

corrections to initial SSC attitude solution. Our biggest concern at the present is

whether SSC will remove outlier points from the GPS data set. We assume they will

clean the position data before delivery to Level 1 processing. SSC guarantee an

accuracy of xxx in the Odin ECI position.

HRESULT GetOdinPosition(

double mjd,

ECIVECTOR* pos

);

IDL> pos = L1->GETODINPOSITION(mjd)

MAT> [pos] = GetOdinPosition(L1, mjd)

Parameters

mjd

The time at which the position is required.

pos

Returns the ECI position of Odin in meters. If there is an error then it will set all

coordinates to zero.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 45 10/26/2012

GetOdinVelocity
Fetch the ECI X,Y,Z velocity of Odin using any adjustments and/or corrections to

initial SSC attitude solution. SSC guarantee an accuracy of xxx in the Odin ECI

position.

HRESULT GetOdinVelocity(

double mjd,

ECIVECTOR* v

);

IDL> v = L1->GETODINVELOCITY(mjd)

MAT> [v] = GetOdinVelocity(L1, mjd)

Parameters

mjd

The UTC at which the position is required. Expressed as a Modified Julian date.

v

Returns the ECI velocity of Odin in meters per second. If there is an error then it

will set all coordinates to zero.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 46 10/26/2012

GetOperatingMode [Not Properly Implemented]
Fetches the science operating mode of a specific instrument at a specific instant. For

OSIRIS this value is identical to the scienceprog field in the OS_L1 and IR_L1

structures.

HRESULT GetOperatingMode(

double mjd,

int instrument,

int* mode_id,

double* start_time,

double* end_time

);

Parameters

mjd

The UTC at which the mode is required. Expressed as a Modified Julian date.

instrument

The id code of the required instrument. The code only guarantees support for

OSIRIS detectors. The value is assumed to be selected from enum

ODIN_INSTRUMENT.

mode_id

Receives the id code of the operating mode active on the specified instrument at

the specified time. If there is an error then this value will be set to -1. May be

NULL.

start_time

Returns the UTC start time of the specified operating mode. Expressed as a

Modified Julian Date.

end_time

Returns the UTC end time of the specified operating mode. Expressed as a

Modified Julian Date.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 47 10/26/2012

GetOrbitNumber
Fetch the Odin orbit number for the specified time.

HRESULT GetOrbitNumber(

double mjd,

int* n

);

IDL> n = L1->GetOrbitNumber(mjd)

MAT> n = GetOrbitNumber(L1,mjd)

Parameters

mjd

The UTC time at which the orbit number is required. Expressed as a Modified

Julian Date.

n

Returns the orbit number. If no orbit number is valid at the specified time then

returns -1.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 48 10/26/2012

GetOrbitStartAndEndTimes
Fetch the start and end time of the specified orbit.

HRESULT GetOrbitStartAndEndTimes(

int orbitnumber,

double* starttime,

double* endtime

);

IDL> L1->GETORBITSTARTANDENDTIMES, orbitnumber,

starttime,

endtime

MAT> [starttime,

 endtime] = GetOrbitStartAndEndTimes(L1, orbitnumber)

Parameters

orbitnumber

The specified orbit number.

starttime

returns the UTC start time of this orbit. Expressed as a Modified Julian Date.

This is defined as the ascending node of the orbit; i.e. the northward crossing of

the equator, identified by the ECI Z component of the spacecraft position

changing from negative to positive. If there is an error then this will return 0.0

endtime

Returns the UTC end time of the orbit. Expressed as a Modified Julian Date. If

there is an error then this will return 0.0

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 49 10/26/2012

GetOsirisEcmwf
Retrieve the OSIRIS_ECMWF structure corresponding to the specified mjd. This

structure contains height profiles of temperature and density from the ground to 70

km at the tangent point when the spacecraft was looking at 30 km altitude. The

OSIRIS_ECMWF structures are nominally available only for UP/DOWN aeronomy

scans. The user must check that the returned structure is close enough in time to the

requested mjd for their purposes. It is possible under dysfunctional conditions that

the call may succeed but the returned time is several hours from that requested.

The user must also check for missing data as the ECMWF model frequently does not

cover the entire region from ground to 70 km. Missing values of temperature or

density are indicated by a negative value (-9999999.0). The density is in

molecules/cm3 and the temperature is in Kelvin.

HRESULT GetOsirisEcmwf(

double mjd,

OSIRIS_ECMWF** ecmwf,

);

IDL> ecmwf =L1->GETOSIRISECMWF(mjd, altitude, density,temperature)

MAT> [ecmwf, altitude, density, temperature] = GetOsirisEcmwf(L1, mjd)

Parameters

mjd

The UTC expressed as a Modified Julian Date at which ECMWF data are

requested.

ecmwf

Returns a pointer to the OSIRIS_ECMWF structure for the requested mjd. May

return NULL. User must check that the structure is appropriate for their

requested time.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Note:

The IDL version returns the altitude, density and temperature as arrays rather than

as part of the structure

Return to Odin Level 1 Services

 Nick Lloyd Page 50 10/26/2012

GetOSSlitCurvature
Retrieves the offset of the spectrograph slit in spatial pixels at a specific wavelength

index. The offset of the slit is set so it is close to 0 near to wavelength index 730.

This function is provided for users who must account for the off-axis nature of pixels

on a detector.

HRESULT GetOSSlitCurvature(

double wavelength_Index,

double* offset

);

IDL> offset =L1->GETOSSLITCURVATURE(wavelength_index)

MAT> [offset] = GetOSSlitCurvature(L1, wavelength_index)

Parameters

wavelength_index

A value between 0 and 1353 used to index the wavelength. A value of -9999 can

be used to force the code to return an offset value of 0.0.

offset

The offset of the slit in the spatial (along the slit) direction at this wavelength. It

is specified in spatial pixels. This value should be added to the spatial position at

wavelength index 730 to get the true pointing at the specified wavelength.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 51 10/26/2012

GetPixelCFUnitVector (Deprecated)
This function has been replaced by GetPixelCFUnitVectorExt. This function is provided

for users who must account for the off-axis nature of pixels on a detector.

HRESULT GetPixelCFUnitVector(

double mjd,

int odin_instrument_id,

int column,

int row,

CFVECTOR* v

);

IDL> NOT AVAILABLE

MAT> NOT AVAILABLE

Parameters

mjd

The UTC time expressed as a Modified Julian date at which the control frame unit

vector is required.

odin_instrument_id

An integer identifying the required detector. This number is assumed to be

chosen from enum ODIN_INSTRUMENT.

column

The zero-based, column (x coord) of the pixel on the desired instrument. This

value is ignored for IR channels. The value is between 0 and 31 for the

spectrograph and corresponds to the centre of the specified pixel. This direction

is approximately parallel to the “spatial” direction of the CCD.

row

The zero-based, row (y coord) of the pixel on the desired instrument. This value

is ignored for the spectrograph. The value is between 0 and 127 for the IR

channels. This direction is approximately parallel to the “height” direction. Note

that the function returns the pointing at the center of the specified pixel.

v

Returns the unit vector of the desired axis in the spacecraft control frame

coordinate system. If there was an error then it sets all components to zero.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 52 10/26/2012

GetPixelCFUnitVectorExt
Retrieves the unit vector of the pointing/viewing of a specified pixel on the specified

instrument. Returns the coordinates in the Odin Control Frame.

HRESULT GetPixelCFUnitVectorExt(

double mjd,

int odin_instrument_id,

double column,

double row,

CFVECTOR* v

);

IDL> v =L1->GETPIXELCFUNITVECTOREXT(mjd,

 odin_instrument_id,

 column,

 row)

MAT> [v] = GetPixelCFUnitVectorExt(L1,

mjd,

odin_instrument_id,

column,

row)

Parameters

mjd

The UTC time expressed as a Modified Julian date at which the control frame unit

vector is required.

odin_instrument_id

An integer identifying the required detector. This number is assumed to be

chosen from enum ODIN_INSTRUMENT.

column

This value is between 0.00 and 32.00 for the spectrograph spatial direction

parallel to the spectrograph slit. Note that the user must enter the “0.5” to get

the centre of a spatial pixel e.g. enter 0.5 for the centre of pixel 0 and 31.5 for

the centre of pixel 31. This value is ignored for IR channels.

row

This value is interpreted as the wavelength pixel (0-1353) for the spectrograph

and is used to correct for the curvature of the slit imaged onto the CCD as a

function of wavelength, enter a value of -9999 if you do not wish to correct for

slit curvature. The value is between 0.00 and 128.00 for the IR channels. Note

that the user must enter a value of 0.5 to get the centre of IR pixel 0 and 127.5

to get the center of IR pixel 127.

v

Returns the unit vector of the desired axis in the spacecraft control frame

coordinate system. If there was an error then it sets all components to zero.

Returns

 Nick Lloyd Page 53 10/26/2012

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 54 10/26/2012

GetPlanetInFOV
Determines whether a planetary body is within a specified field of view. The code

determines whether any portion of the planetary body’s disk is within the field of

view.

HRESULT GetPlanetInFOV(

double mjd,

const ECIVECTOR* , ecibore,

const ECIVECTOR* eciinsy,

double fovy,

double fovz,

int bodyid,

nxBOOL* infieldofview,

double* angulardistance

);

IDL> infieldofview = L1->GETPLANETINFOV(mjd,

ecibore,

eciinsy,

fovy,

fovz,

bodyid,

angulardistance)

MAT> [infieldofview,

 angulardistance] = GetPlanetInFOV(L1,

mjd,

ecibore,

eciinsy,

fovy,

fovz,

bodyid)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

ecibore

The look-direction specified in ECI coordinates. The direction corresponds to the

center of the instrument’s field of view.

eciinsy

The instrument’s Y axis, unit vector specified in the ECI coordinate system.

fovy

The instrument’s Y-axis, full, angular width (edge to edge) specified in degrees.

If fovz is less than or equal to 0.0 then fovy specifies the angular diameter of a

circular field of view.

fovz

The instrument’s Z axis, full, angular width (edge to edge) specified in degrees.

If fovz is less than or equal to 0.0 then the field of view is assumed to be

circular.

 Nick Lloyd Page 55 10/26/2012

bodyid

The id code of the requested planetary body. It is assumed the value is chosen

from enum PLANETARY_BODY.

infieldofview

Returns nxTRUE if the centre of the object is within the field of view. Users

should be aware that large objects like the moon may actually have parts within

the field of view even if the centre of the moon isn’t.

angulardistance

Returns the angular distance, in degrees, of the centre of the planetary object

from the specified boresight look vector.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Comments

The user should note that the function indicates that the planetary body is inside the

field of view even if the portion of the body’s disk is not illuminated by sunlight.

This is of particular importance for the moon which will normally have only 50% of

the disk illuminated for a dawn dusk orbit. The code corrects for light aberration

due to the motion of the satellite and also accounts for the topocentric location of the

satellite. The overall accuracy of the code is better than 1 arc second.

Return to Odin Level 1 Services

 Nick Lloyd Page 56 10/26/2012

GetPlanetInInstrumentFOV
Determines whether a planetary body is within a specified field of view. The code

determines whether any portion of the planetary body’s disk is within the field of

view.

HRESULT GetPlanetInInstrumentFOV(

double mjd,

int odin_instrument_id,

int pointingaccuracy,

int bodyid,

nxBOOL* infieldofview,

double* angulardistance

);

IDL> infieldofview = L1->GETPLANETININSTRUMENTFOV(mjd,

odin_instrument_id,

pointingaccuracy,

bodyid,

angulardistance)

MAT> [infieldofview,

 angulardistance] = GetPlanetInInstrumentFOV(L1,

 mjd,

 odin_instrument_id,

 pointingaccuracy,

 bodyid)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

odin_instrument_id

The id of the required instrument. This value should be selected from enum

ODIN_INSTRUMENT.

pointingaccuracy

The overall pointing accuracy of the Odin satellite expressed in degrees. This

value is added to the instrument’s intrinsic field of view. Hence the value

returned indicates whether the specified planet is anywhere in the potential field

of view rather than the exact field of view.

bodyid

The id code of the requested planetary body. It is assumed the value is chosen

from enum PLANETARY_BODY.

infieldofview

Returns nxTRUE if the centre of the object is within the field of view. Users

should be aware that large objects like the moon may actually have parts within

the field of view even if the centre of the moon isn’t.

angulardistance

 Nick Lloyd Page 57 10/26/2012

Returns the angular distance, in degrees, of the centre of the planetary object

from the instrument’s boresight look vector.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Comments

The user should note that the function will indicate the planetary body is inside the

field of view even if the portion of the body’s disk is not illuminated by sunlight.

This is of particular importance for the moon which will normally have only 50% of

the disk illuminated for a dawn dusk orbit. The code corrects for light aberration

due to the motion of the satellite and also accounts for the topocentric location of the

satellite. The overall accuracy of the code is better than 1 arc second.

Return to Odin Level 1 Services

 Nick Lloyd Page 58 10/26/2012

GetScanData
Retrieve all of the data for a specific scan for a specific instrument. The user is

responsible for selecting records of interest within the scan. The user may release

the scan of data through a call to ReleaseScanData(). The total size of virtual

memory is the only limitation on the number of scans that may be held in memory at

any instant. GetScanData will properly handle scans that straddle file boundaries.

HRESULT GetScanData(

int scannumber,

int instrument,

const char* levelstr,

IOnyxCollection** collection

);

IDL> data = L1->GETSCANDATA(scannumber,

instrument,

levelstr,

collection)

IDL> [data,

 collection] = GetScanData(L1,

 scannumber,

 instrumentid,

 levelstr)

Parameters

scannumber

The number of the desired scan.

instrument

The instrument for which data are requested. It is assumed the value is chosen

from enum ODIN_INSTRUMENT. Only OSIRIS detectors are guaranteed to be

supported by this algorithm.

levelstr

A string used to identify the level required. Typical examples are “1A” for level

1A and “1B” for level 1B. This string is used when level 1 filenames are

generated.

collection

Returns a pointer to a new IOnyxCollection object which contains all of the

records associated with the scan. The records will be guaranteed to be in

ascending order in time.

C/C++: The user must call collection->Release() or ReleaseScanData() to

release memory and resources associated with the collection.

IDL and Matlab: this variable is an object that must be kept alive if the user plans

to access any of the IOnyxArray data fields of the structure data using

IOnyArrayGetData. The resources associated with this object should be released

by calling,

IDL> status = collection->Release()

 Nick Lloyd Page 59 10/26/2012

MAT> status = Release(collection);

data

IDL: returns an array of structures extracted from the underlying collection.

Matlab: Returns a 1x1 structure with fields that are arrays extracted from the

underlying collection

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 60 10/26/2012

GetScanDiagnostics
Fetch the diagnostic information for the given scan.

HRESULT GetScanDiagnostics(

int scannumber,

const ODIN_SCAN_DIAGNOSTICS** scandiagnostics,

);

MAT> [scandiagnostics] = GetScanDiagnostics(L1, scannumber)

Parameters

scannumber

The number of the scan.

scandiagnostics

Returns a pointer to the current scan diagnostics. The pointer is valid until the

next call to any OSIRIS Level1 API functions. The function will return a NULL if

there is no information available for the specified scan.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

History

First implemented in version 1.17, October 2, 2008.

Return to Odin Level 1 Services

 Nick Lloyd Page 61 10/26/2012

GetScanInfo
Fetch the auxiliary information for the given scan.

HRESULT GetScanInfo(

int scannumber,

const ODIN_SCAN_ENTRY** scaninfo,

);

IDL> scaninfo = L1->GETSCANINFO(scannumber)

MAT> [scaninfo] = GetScanInfo(L1, scannumber)

Parameters

scannumber

The number of the scan.

scaninfo

Returns a pointer to the current scan info. The pointer is valid until the next call

to any OSIRIS Level1 API functions. The function will return a NULL if there is

no information available for the specified scan.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

History

A bug was found in this function that caused an access violation when accessing

orbits with no scan data. This bug was fixed in software version 1.06 released on

2003-06-27.

Return to Odin Level 1 Services

 Nick Lloyd Page 62 10/26/2012

GetScanNumber
Fetch the Odin scan number at any given instant during the mission.

HRESULT GetScanNumber(

double mjd,

int* n

);

IDL> n =L1->GETSCANNUMBER(mjd)

MAT> [n] = GetScanNumber(L1, mjd)

Parameters

mjd

The UTC for which the scan number is required. Expressed as a Modified Julian

Date

n

Returns the associated scan number. If there is an error then it returns -1;

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 63 10/26/2012

GetScanStartAndEndTimes
Fetch the start and end time of the specified scan.

HRESULT GetScanStartAndEndTimes(

int scannumber,

double* starttime,

double* endtime

);

IDL> L1->GETSCANSTARTANDENDTIMES, scannumber,

starttime,

endtime

MAT> [starttime,

 endtime] = GetScanStartAndEndTimes(L1, scannumber)

Parameters

orbitnumber

The specified scan number.

starttime

Returns the UTC start time of the scan expressed as a Modified Julian Date. If

there is an error then this will return as 0.0

endtime

Returns the UTC end time of the scan expressed as a Modified Julian Date. If

there is an error this will return as 0.0

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 64 10/26/2012

GetScienceProgram [Not properly Implemented]
Fetches a string describing the overall Odin science program in effect at any given

instant.

HRESULT GetScienceProgram(

double mjd,

const char** science_program

);

IDL> science_program =L1->GETSCIENCEPROGRAM(mjd)

MAT> [science_program] = GetScienceProgram(L1, mjd)

Parameters

mjd

The UTC at which the mode is required. Expressed as a Modified Julian date.

science_program

Returns a pointer to a zero terminated string describing the Odin science

program in effect at the specified time. It is strongly recommended that the user

copy this string to a local buffer as soon as possible as the pointer will become

invalid once the Odin level 1 services database is closed down.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 65 10/26/2012

GetScanTropopauseEntry
Fetch a tropopause definition structure for the given scan.

HRESULT GetScanTropopauseEntry (

int scannumber,

ODIN_SCAN_TROPOPAUSE* entry

);

IDL> Not available

MAT> [thermaltrop,

 dynamictropo,

 thetatropo,

 latitude,

 longitude,

 mjd] = GetScanTropopauseEntry(L1, scannumber)

Parameters

scannumber

The specified scan number.

entry

Returns the ODIN_SCAN_TROPOPAUSE for the requested scan. The structure

contains the thermal , dynamic and potential temperature (theta) tropopause

heights as derived from NCEP. If there is an error then these fields will return as

negative values (e.g. -9999.0)

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 66 10/26/2012

GetScanV507AlbedoEntry
Fetch the V507 processing albedo structure for the given scan.

HRESULT GetScanV507AlbedoEntry(

int scannumber,

ODIN_SCAN_V507ALBEDO* entry

);

IDL> Not available

MAT> Not Available

Parameters

scannumber

The specified scan number.

entry

Returns the ODIN_SCAN_V507Albedo for the requested scan. The structure

contains the version and albedo calculated in the Version 507 Level 2 processing.

This is often used as an input the future versions of processing. If there is an

error then these fields will return as negative values (e.g. -9999.0)

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 67 10/26/2012

GetSolarAngles
Returns solar angles appropriate to the given tangent point location and look-

direction unit vector.

HRESULT GetSolarAngles(

double mjd,

const ECIVECTOR* location,

const ECIVECTOR* lookvector,

double* sza,

double* saa,

double* ssa

);

IDL> L1->GETSOLARANGLES, mjd, location, lookvector, sza, saa, ssa

MAT> [sza, saa, ssa] = GetSolarAngles(L1, mjd, location, lookvector)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

location

The tangent point location specified in the ECI coordinate system.

lookvector

The boresight, look-direction unit vector specified in the ECI coordinate system.

It is assumed that this vector corresponds to the centre of the instrument’s field

of view. Note that the optic axis for the IR channels is not centred on the

detector.

sza

The solar zenith angle in degrees at location, defined as: 0 is overhead, 90 is on

the horizon and 180 is directly below.

saa

The solar azimuth angle in degrees at location, defined as: 0 is due North, 90 is

due East, 180 is due South and 270 is due West.

ssa

The scattering angle in degrees defined by the (dot product) angle between

lookvector and a vector from location to the Sun. The scattering angle is defined

as: 0 is straight through (forward-scatter), 90 is right angle scatter and 180 is

back-scatter.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 68 10/26/2012

GetStarsInFOV
Returns a list of stars within the specified field of view. The algorithm transforms the

instrument field of view from the ECI coordinate system to the J2000/FK5 standard

epoch. The accuracy of the transformation is better than 1 arc second and includes

a relativistic correction for the aberration of light due to the spacecraft velocity.

HRESULT GetStarsInFOV(

double mjd,

const ECIVECTOR* ecibore,

const ECIVECTOR* eciinsy,

double fovy,

double fovz,

double thresholdmag,

STAR_CATALOGUE_ENTRY* stars,

int* maxstars,

);

IDL> stars =L1->GETSTARSINFOV(mjd,

ecibore,

eciinsy,

fovy,

fovz,

thresholdmag)

MAT> [stars] = GetStarsInFOV(L1,

mjd,

ecibore,

eciinsy,

fovy,

fovz,

thresholdmag)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

ecibore

The boresight, look-direction unit vector specified in the ECI coordinate system.

It is assumed that this vector corresponds to the centre of the instruments field

of view. Note that the optic axis for the IR channels is not centred on the

detector.

eciinsy

The instrument’s Y axis, unit vector specified in the ECI coordinate system.

fovy

The angular, full width, field of view along the instrument’s Y axis specified in

degrees. If fovz is negative or zero then the field of view is assumed to be

circular with angular diameter given by fovy. Note that the user may want to

over-estimate the field of view to account for errors in the satellite attitude

determination.

 Nick Lloyd Page 69 10/26/2012

fovz

The angular, full width, field of view along the instrument’s Y axis specified in

degrees. If fovz is negative or zero then the field of view is assumed to be

circular with angular diameter given by fovy. Note that the user may want to

over-estimate the field of view to account for errors in the satellite attitude

determination.

thresholdmag

Ignore stars fainter than this magnitude

stars

A user supplied buffer used to store descriptions of stars within the field of view.

Upon input maxstars specifies the maximum size of this list. In IDL and Matlab it

returns a structure whose fields are derived from the star catalogue entries

stored in C++.

maxstars

Upon input specifies the maximum number of entries that can be placed in the

used supplied buffer, stars. Upon output contains the total number of stars

within the field of view above the specified magnitude regardless of the size of

the user supplied buffer. Matlab and IDL will never return more than 100 stars.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Comments

The instrument pointing vectors can be retrieved using GetCFUnitVector followed

by a call to CFToECI.

Return to Odin Level 1 Services

 Nick Lloyd Page 70 10/26/2012

GetStarsInInstrumentFOV
A convenient wrapper function for the API function GetStarsInFOV. Returns a list of

stars within the specified field of view. The algorithm ensures proper transformation

of the light aberration correction and selects the proper axes and type of field of view

for the specified instrument.

HRESULT GetStarsInInstrumentFOV(

double mjd,

int odin_instrument_id,

double pointingaccuracy,

double thresholdmag,

STAR_CATALOGUE_ENTRY* stars,

int* maxstars

);

IDL> stars = L1->GETSTARSININSTRUMENTFOV(mjd,

odin_instrument_id,

pointingaccuracy,

thresholdmag)

MAT> [stars] = GetStarsInInstrumentFOV(L1,

 mjd,

 odin_instrument_id,

 pointingaccuracy,

 thresholdmag)

Parameters

mjd

The UTC expressed as a Modified Julian Date.

odin_instrument_id

The id of the requested instrument. This must be selected from enum

ODIN_INSTRUMENT.

pointingaccuracy

The overall pointing accuracy of the spacecraft expressed in degrees. This

function serves to widen the effective field of view of the instrument. Hence the

function returns the list of stars that may be in the field of view rather than an

absolute list of stars that are definitely in the field of view.

thresholdmag

Ignore stars fainter than this magnitude

stars

A user supplied buffer used to store descriptions of stars within the field of view.

Upon input maxstars specifies the maximum size of this list. In IDL and Matlab it

returns a structure whose fields are derived from the star catalogue entries

stored in C++.

maxstars

Upon input specifies the maximum number of entries that can be placed in the

user-supplied buffer, stars. Upon output contains the total number of stars

 Nick Lloyd Page 71 10/26/2012

within the field of view. This value may be greater than the size of the user

supplied buffer but the algorithm will not write beyond the end of the buffer.

Matlab and IDL will never return more than 100 stars.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 72 10/26/2012

GetUVPSF
Get the spectrograph FWHM point spread function using the PSF measured from the

3 UV Fraunhofer lines (313nm, 320 nm and 351 nm).

HRESULT GetUVPSF (

double mjd,

double wavelen_nm,

double* fwhm_psf_nm

);

IDL> N/A

MAT> [fwhm_psf_nm, ok] = GetUVPSF(L1, mjd, wavelen_nm)

Parameters

mjd

The modified Julian date at which the value of gamma is required

Wavelen_nm

The wavelength in nanometers at which the point spread function is required.

Note that the current system truncates the wavelength interpolation at 313 nm

and 351 nm

Fwhm_psf_nm

Returns the full width half maximum point spread function expressed in

nanometers. May return negative answer if the function does not succeed.

Returns

Return S_OK if success else E_FAIL or other COM error codes

Return to Odin Level 1 Services

 Nick Lloyd Page 73 10/26/2012

 Nick Lloyd Page 74 10/26/2012

InitializeLevel1Services
This function must be called before using the level 1 services. Each call to

InitializeLevel1Services must be matched by a call to

UninitializeLevel1Services.

HRESULT InitializeLevel1Services(

InxLog* logger

);

IDL> Not required, automatically performed at object creation.

MAT> Not required, automatically performed at object creation.

Parameters

logger

The InxLog* interface of the object that will be used for reporting error messages

within the Level 1 services and lower level Onyx database software. This

parameter may be NULL in which case all error messages are disabled.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 75 10/26/2012

LoadMjdOS
Loads all the requested range of OSIRIS spectrograph records, tangent point and

solar angles in to local variables for a specified time range. Only available in Matlab

and IDL.

IDL> os = L1->LoadMjdOS(startmjd, endmjd, data, tp, sun, error, keywords)

1. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, startmjd, endmjd);

2. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, startmjd, endmjd, options);

Parameters

startmjd

The time at which to start retrieving records expressed as a modified Julian Date.

endmjd

The time at which to finish retrieving records expressed as a modified Julian

Date.

See function LoadOrbitOS for a description of all other variables and keyword

options.

 Nick Lloyd Page 76 10/26/2012

LoadOrbitOS
Loads all the requested range of OSIRIS spectrograph records, tangent point and

solar angles in to local variables for a specified orbit. Only available in Matlab and

IDL.

IDL> os = L1->LoadOrbitOS(orbit, data, tp, sun, error, keywordoptions)

1. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, orbit);

2. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, orbit, options);

Parameters

orbit

The orbit number to load.

data

Returns a double array (1353, N) corresponding to the spectra for each of the N

records of variable os..

tp

Returns a double array (3, N) corresponding to the tangent point for each of the

N records of os. Index 1 = latitude, Index 2 = longitude, Index 3 = Height in

kms.

sun

Returns a double array (3, N) corresponding to the solar angles for each of the N

records of os. Index 1 = solar zenith angle at tangent point, Index 2 = solar

azimuth angle at tangent point, Index 3 = solar scattering angle.

error

If requested through option geterror, returns a double array (1353, N)

corresponding to the error of each value of variable data. By default it is not

requested and returns a scalar 0.

options

A string that specifies keyword options eg. 'szarange = [minsza, maxsza];’

Keyword options

szarange = [minsza, maxsza];

Sets the acceptable solar zenith range, default is ‘szarange = [0,180];’

heightrange = [minh_kms, maxh_kms];

Sets the acceptable height range in kms, default is ‘heightrange=[-100,200];’

level = ‘’0_’’;

Loads level 0 data instead of level 1. Default is level 1

geterror = true;

 Nick Lloyd Page 77 10/26/2012

Loads the error bars and return the value in variable error. The default is to not

load errors and set variable error to a scalar value of 0.

checkflags = false;

Disable checking the pixel flags and masking of bad pixels. The default is to

check the pixel flags and set any bad pixels in variable data to 0.

Return to Odin Level 1 Services

 Nick Lloyd Page 78 10/26/2012

LoadScanOS
Loads all the requested range of OSIRIS spectrograph records, tangent point and

solar angles in to local variables for a specified scan number. Only available in Matlab

and IDL.

IDL> os = L1->LoadMjdOS(scan, data, tp, sun, error, keywords)

1. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, scan);

2. MAT> [os, data, tp, sun, error] = LoadOrbitOS(L1, scan, options);

Parameters

scan

Either the requested scan number (1000*orbit plus scan in orbit) or a

SCAN_INFO structure returned by GetScanInfo.

See function LoadOrbitOS for a description of all other variables and keyword

options.

 Nick Lloyd Page 79 10/26/2012

LocateOrbitFile
Function searches all of the directories specified by environment variable

ODINORBITDIR for the specified orbital data file. Saves the user from having to

develop their own code. Function returns the full path name of the file if found.

HRESULT LocateOrbitFile(

char sitecode,

char instrumentid,

const char* level,

int orbitnumber,

const char* extension,

char* buffer,

int maxchar

);

IDL> buffer = L1->LOCATEORBITFILE(sitecode,

instrumentid,

level,

orbitnumber,

extension)

MAT> [buffer] = LocateOrbitFile(L1,sitecode,

instrumentid,

level,

orbitnumber,

extension)

Parameters

sitecode

The character identifying the sitecode. This is the first character of the orbital

filename. All OSIRIS orbital data files start with ‘s’.

instrumentid

The character identifying the type of data. This is the second character of the

orbital filename. Spectrograph data is ‘s’, IR data is ‘i’, attitude data is ‘o’ and

housekeeping data is ‘h’.

level

A two character string identifying the product level. For OSIRIS, ‘0_’ is level 0

and ‘1_’ is level 1.

orbitnumber

The requested orbit number.

extension

The file extension of the requested file. Spectrograph Level 1 files are ‘.os1’. IR

Level 1 files are ‘.ir1’, Attitude level 1 files are ‘.oat’ and housekeeping level 1

files are ‘.hk1’. . Spectrograph Level 0 files are ‘.os0’. IR Level 1 files are ‘.ir0’,

Attitude level 0 files are ‘.oat’ and housekeeping level 0 files are ‘.hk’

buffer

 Nick Lloyd Page 80 10/26/2012

A user supplied buffer that will return the full pathname of the requested file if

found otherwise will contain an empty, zero terminated string. The number of

characters in the buffer is specified by maxchar. The function will fail and return

an empty string if the buffer is not large enough to hold the files full path.

maxchar

The size of the user supplied buffer in characters. The function will guarantee

that it does not write more than maxchar characters to the buffer

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 81 10/26/2012

LOSEntrancePoints
Calculates the points at which a given line of sight from a given position intersects,

(enters and exits), a shell at a specific height above the geoid Earth. The algorithm

may use straight line geometry for a rapid solution or ray-tracing through a standard

model for more accurate, but slower, refractive index corrections. Note that the line

of sight will generally not intersect height shells the tangent point. Raytracing option

is not yet implemented.

HRESULT LOSEntrancePoints(

const ECIVECTOR* satelliteposition,

const ECIVECTOR* lookvector,

double geodetic_height,

ECIVECTOR* entrance_point,

ECIVECTOR* exit_point,

nxBOOL doraytracing

);

IDL> L1->LOSENTRANCEPOINTS, satelliteposition,

lookvector,

geodetic_height,

entrance_point,

exit_point,

doraytrace

MAT> [entrance_point,

 Exit_point] = LOSEntrancePoints(L1,

 satelliteposition,

 lookvector,

 geodetic_height,

 doraytrace)

Parameters

satelliteposition

The position of the satellite/observer in the ECI reference frame. This array is

not modified by this procedure.

lookvector

The look direction of the observer in the ECI reference frame. This array is not

modified by this procedure. See CFToECI.

geodetic_height

The height of the shell in km above the surface of the reference geoid.

entrance_point

Returns the ECI point where the ray emerging from the satelliteposition in

direction lookdirection enters the shell at height geodetic_height above the

reference geoid. If there is no intersection because the shell is either above the

satellite or below the tangent point then entrance_point is set to 0.

exit_point

 Nick Lloyd Page 82 10/26/2012

Returns the ECI point where the ray emerging from the satelliteposition in

direction lookdirection exits the shell at height geodetic_height above the

reference geoid. If there is no intersection because the shell is below the tangent

point then exit_point is set to 0.

doraytracing

If nxTRUE then determine the entrance and exit points using a ray-tracing

algorithm otherwise use straight line geometry.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 83 10/26/2012

LOSTangentPoint
Calculates the ECI coordinates of the tangent point of a given look direction at a

given position. The calculation assumes the standard geoid Earth used in Odin. It

does not require a correction for sidereal time as there is circular symmetry in

longitude.

HRESULT LOSTangentPoint(

const ECIVECTOR* satelliteposition,

const ECIVECTOR* lookvector,

ECIVECTOR* tangent_point,

nxBOOL doraytracing

);

IDL> tangent_point =LOSTANGENTPOINT(satelliteposition,

lookvector,

doraytrace)

MAT> [tangent_point] = LOSTangentPoint(L1,satelliteposition,

lookvector,

doraytrace)

Parameters

satelliteposition

The position of the satellite/observer in the ECI reference frame. This array is

not modified by this procedure.

lookvector

The look direction of the observer in the ECI reference frame. This array is not

modified by this procedure.

tangent_point

Returns the tangent point in the ECI reference frame. If no tangent point exists

then it returns 0 in all fields.

doraytracing

If nxTRUE then determine the tangent point using a ray tracing algorithm

otherwise use straight line geometry. Not yet supported.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 84 10/26/2012

OrbitalPlanetoECI
Converts the ECI coordinates of a point to orbital plane coordinates. The orbital

plane coordinates are returned as a GEODETIC_COORD but the caller must be aware

that they are actually geocentric coordinates and not geodetic coordinates.

HRESULT OrbitalPlanetoECI (

double anmjd,

nxBOOL updateplane,

const GEODETIC_COORD*geodetic_pos

ECIVECTOR* eci_position,

);

IDL> eci_position = L1->OrbitalPlanetoECI(anmjd, geodetic_pos,

 updateplane=updateplane)

MAT> [eci_position] = OrbitalPlanetoECI(L1,

 anmjd,

 updateplane,

 geodetic_pos)

Parameters

anmjd

The UTC expressed as a Modified Julian Date used to calculate the orbital plane.

This value is only used if updatereferenceplane is true or if the plane is internally

undefined. The value is also used to determine the number of revolutions that

have occurred since the epoch that defines the orbital plane.

updateplane

If nxTRUE then update the reference orbital plane using the ascending node prior

to time anmjd. If nxFALSE then don’t update the orbital plane. This is a keyword

in the IDL implementation.

geodetic_pos

The location of a point expressed in orbital plane coordinates: geocentric latitude,

longitude and geocentric radius in kilometers. In orbital plane coordinates, X

points to the ascending node in the equatorial plane. Z is the spin axis of the

orbit perpendicular to the orbital plane (towards sun for ODIN) and Y is

perpendicular to X and Z. Longitude is the angular distance from the ascending

node in degrees. Latitude is the angular distance from the orbital plane and

height is the geocentric radius in kilometers.

eci_position

The location of the same point expressed in ECI coordinates (meters).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 85 10/26/2012

OSIRISAvgTemperature
Returns one of several temperatures from the OSIRIS HouseKeeping. The code looks

up the temperature from the onboard statistics stored and transmitted by OSIRIS,

which usually averages several hundred measurements to get a smoother value.

HRESULT OSIRISAvgTemperature (

double mjd,

double* temperature,

int avgtype

);

IDL> N/A

MAT> [temperature] = OSIRISAvgTemperature(L1, mjd, avgtype)

Parameters

mjd

The modified Julian date at which the temperature is required.

temperature

returns the temperature value. May return very large or negative value if there is

an error, eg -9999.0.

avgtype

Identifies the type of temperature required.

0 retrieves optics box temperature.

1 retrieves OS strap temperature.

2 retrieves OS CCD temperature.

Returns

Return S_OK if success else E_FAIL or other COM error codes

Return to Odin Level 1 Services

 Nick Lloyd Page 86 10/26/2012

OSSolarAngles
Calculates the solar angles associated with the OSIRIS-Spectrograph bore sight look

vector for the array of instants specified in mjdarray. Returns the solar angles as an

array of (3,N) numbers. This function is only available in Matlab and IDL.

IDL> geodata = L1->OSSolarAngles(mjdarray)

MAT> [geodata] = OSSolarAngles(L1, mjdarray);

Parameters

mjdarray

An array of UTC instants expressed as a Modified Julian Date.

Returns

The solar angles an array (3,N). First index is returned as 1= solar zenith angle at

tangent point, 2 = solar azimuth angle at tangent point, 3 = solar scattering angle.

Return to Odin Level 1 Services

 Nick Lloyd Page 87 10/26/2012

OSTangentPoint
Calculates the tangent point of the OSIRIS-Spectrograph, bore-sight look vectors for

the array of times specified in mjdarray. Returns the tangent point as an array of

geodetic coords (3,N) . This function is only available in Matlab and IDL.

IDL> geodata = L1->OSTangentPoint(mjdarray)

MAT> [geodata] = OSTangentPoint(L1, mjdarray);

Parameters

mjdarray

An array of UTC instants expressed as a Modified Julian Date.

Returns

The location of the tangent point as an array (3,N). First index is returned as 1=

latitude, 2 = longitude, 3 = height in km.

Return to Odin Level 1 Services

 Nick Lloyd Page 88 10/26/2012

ReleaseScanData
Release the scan of data acquired by either GetScanData or

GetDataBetweenTimes. The status of the collection object is undefined after this

call. The user should assume that the object no longer exists and must not make

any calls to its interface functions.

HRESULT ReleaseScanData(

IOnyxCollection* collection

);

IDL> Not used

MAT> Not Used

Parameters

collection

Release the collection returned from either GetScanData or

GetDataBetweenTimes.

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 89 10/26/2012

StwLocateResetEpoch
Informs the code that it should convert the times in all subsequent calls to StwToUtc

using a reset epoch that is derived from the nominal UTC passed to the routine. This

algorithm will be used by users who need STW conversion for a time period that they

know is free of Odin resets. The reset epoch will stay in force until the user either

calls StwUsesFixedResetEpoch or StwLocateResetEpoch.

HRESULT StwLocateResetEpoch(

double mjd

);

IDL> L1->STWLOCATERESETEPOCH, mjd

MAT> [status] = StwLocateResetEpoch(L1, mjd)

Parameters

mjd

The nominal UTC of the desired time conversion expressed as a modified Julian

Date. The user should be careful when using this function near to periods when

the Odin STW is known to reset.

Returns

Return S_OK otherwise it will return E_FAIL and other COM error codes. This is the

value of status in the Matlab version.

Return to Odin Level 1 Services

 Nick Lloyd Page 90 10/26/2012

StwToUtc
Converts the Odin Satellite Time Word (STW also known as the format counter) to

Coordinated Universal Time. The algorithm implements the piecewise linear

segments distributed by SSC and stored as part of the level 0 data product in file

STWTOUTC.INI. Proper behaviour of the function requires that the user calls either

StwUsesFixedResetEpoch or StwLocateResetEpoch at least once prior to calling

StwToUtc. This is so the code knows how to locate the appropriate epoch for the

given STW. The STW epochs arise from the fact that the Odin platform does not

guarantee that the STW may not reset during the mission. It is anticipated that only

level 0 users will need to call this function.

HRESULT StwToUtc(

nxDWORD stw

double* mjd

);

IDL> mjd = L1->STWTOUTC(stw)

MAT> [mjd] = StwToUtc(L1, stw)

Parameters

stw

The satellite time word.

mjd

Returns the best estimate of the UTC expressed as a modified Julian Date. Note

that there are no guarantees as to the accuracy of the conversion if the routine

does not return S_OK.

Returns

Return S_OK if success and the accuracy of the conversion is reasonable. Returns

S_FALSE if the conversion is of dubious quality. This will normally occur when the

algorithm is extrapolating out of range or there are no points in the requested reset

epoch. Future version may return E_FAIL and other COM error codes.

Note that stw and mjd field in the spectrograh and IR imaging structure may not

agree with this conversion as there other internal timing offsets applied to these

fields.

Return to Odin Level 1 Services

 Nick Lloyd Page 91 10/26/2012

StwUsesFixedResetEpoch
Informs the code that it should convert the times in all subsequent calls to StwToUtc

using a specific STW reset epoch. The Reset epoch is defined in the <RESET

EPOCH> section of the level 0 data poduct file STWTOUTC.INI. It is anticipated that

only level 0 users will need to call this function. It is intended that the OSIRIS Level

0 SSC decode algorithms will read the STW reset epoch index directly from the SSC

level 0 filenames.

HRESULT StwUsesFixedResetEpoch(

int resetepochindex

);

IDL> L1->STWUSESFIXEDRESETEPOCH, resetepochindex

MAT> [status] = StwUsesFixedResetEpoch(L1, resetepochindex)

Parameters

resetepochindex

Specifies the reset epoch index which the user knows a-priori to exist in file

STWTOUTC.INI.

Returns

Return S_OK otherwise it will return E_FAIL and other COM error codes. This is the

value return in status in the Matlab version.

Return to Odin Level 1 Services

 Nick Lloyd Page 92 10/26/2012

UninitializeLevel1Services
This function must be called after the user has finished using the level 1 services.

Each call to InitializeLevel1Services must be matched by a call to

UninitializeLevel1Services. Failure to observe this constraint will result in

memory leaks at program termination. The user must not access OSIRIS Level 1

services after calling this function.

Note that IDL and Matlab users may simply exit their session without calling this

function. This does no real harm as the Level 1 database is read-only.

HRESULT UninitializeLevel1Services();

IDL> Not used. Automatically called when destroying objects

MAT> [status] = UninitializeLevel1Services(L1).

Returns

Return S_OK if success else E_FAIL or other COM error codes.

Return to Odin Level 1 Services

 Nick Lloyd Page 93 10/26/2012

OSIRIS LEVEL 1 API Structures

 Nick Lloyd Page 94 10/26/2012

Spectrograph and IR Data Product History: Audit Field Values
The spectrograph and IR, Level 0 and Level 1, data products contain an audit field in

the record headers. The audit field tracks changes in the Level 0 and Level 1

processing software. The field audit[0] is used to track the version of Level 0

software used in the processing and audit[1] is used to track the version of Level 1.

Note that these dates are different to the date used by the Level 1 services.

The audit fields were originally generated from the time of compilation of specific

modules in the Level 0 and Level 1 software. This technique ultimately proved

difficult to track and maintain and was replaced in November 2005 by an explicit

dating system. Fortunately there were remarkably few changes in the Level 0 and

Level 1 processing system until November 2005.

Level 0 Audit[0]

1. Less than 53675.0. (pre 2005-11-01).

Original software decoding. No detailed tracking available.

2. 53675.0 (2005-11-01)

Fixed STW to UTC conversion and added internal timing offsets for

spectrograph and IR. This version is only applicable for merged, level 0,

orbital files. All STW to UTC conversions are derived solely from

STW_PLN.DAT. In addition an extra 129.5 milliseconds is added to the mjd

field of the IR records and an extra 97.8 milliseconds is added to the mjd field

of the spectrograph records. These times account for apparent timing offsets

between OSIRIS and the Odin attitude control system.

3. 53689.0 (2005-11-15)

Fixed bug in spectrograph level 0, OS_L0 structure: The crosssectionindex

was off by an offset of 8, i.e. 8 had to be subtracted from the old value to

make it properly reference the pixels. This was due to the fact that the

OSIRIS instrument has an extra 8 “readout” pixels before it reads out the

spectrum. This bug has been addressed in Level 0 versions after this time.

Level 1, Audit[1]

1. Less than 53675.0 (pre 2005-11-01)

Original software decoding.

2. 53675.0 (2005-11-01)

Fixed mjd field to reflect the changes at Level 0.

3. 53745.0 (2006-01-10)

Applied Vega Absolute Calibration to spectrograph data.

 Nick Lloyd Page 95 10/26/2012

Base Data Types
The Odin/OSIRIS software uses the following base data types

nxBYTE unsigned 8 bit integer

nxWORD unsigned 16 bit integer

nxDWORD unsigned 32 bit integer

nxBOOL bool on “C” compilers that support this base type else int

nxTRUE true on “C” compilers that support bool else 1.

nxFALSE false on “C” compilers that support bool else 0.

nxCHAR signed 8 bit integer (rarely used)

nxSHORT signed 16 bit integer (rarely used)

nxLONG signed 32 bit integer (rarely used)

float A floating point which is at least 4 bytes but can be greater.

double A floating point which is at least 8 bytes but can be greater.

int An integer that is at least 4 bytes but can be greater

Return to Structures and Enumerations

 Nick Lloyd Page 96 10/26/2012

CFVECTOR, Spacecraft Control Frame
A reference frame based upon the physical layout of the spacecraft. It is assumed

that the orientation of all instrumentation is known in the spacecraft control frame.

The SSC attitude solution provides quaternions every 17/16 seconds to rotate from

the spacecraft control frame to ECI coordinates, SSC Document SSAK31-7, Odin

Operations- Attitude and Orbit Related Definitions.

The CFVECTOR is identical in structure to the ECIVECTOR and is distinguished for

clarity in the software interfaces.

typedef ECIVECTOR CFVECTOR;

IDL: ECIVECTOR is impleneted as dblarr(3).

Return to Structures and Enumerations

 Nick Lloyd Page 97 10/26/2012

ECIVECTOR, Earth Centered Inertial Reference Frame
Primary reference frame for attitude calculations. Following the definition used by

SSC, Document SSAK31-7, Odin Operations- Attitude and Orbit Related Definitions,

the ECI frame is based upon the celestial sphere using a true equator and equinox

for the current date. The ECI frame is centred at the satellites centre of mass and

moves with the spacecraft velocity (private communication with SSC.

The biggest correction to the attitude is for light aberration due to the relative

motion o fthe spacecraft. This term is of the the order 0.1 to 0.2 arc minutes.

Most ECIVECTOR objects are either dimensionless unit-vectors, position vectors

expressed in meters or velocity expressed in meters per second. We try to stick with

S.I units

 typedef double[3] ECIVECTOR;

Refers to a three dimensional vector expressed in the Earth Centred Inertial (ECI).

The components are stored in the array as [X,Y,Z]; i.e. element 0 = X, element 1 =

Y, element 2 = Z.

IDL: implemented as dblarr(3)

Return to Structures and Enumerations

 Nick Lloyd Page 98 10/26/2012

GEOVECTOR, Geographic Earth Centered Reference Frame
A geocentric, X, Y, Z coordinate system that rotates with the Earth. The X axis is in

the plane of the equator and the Greenwich meridian. The Z axis is parallel to the

pin axis of the earth and Y makes a right handed orthogonal system.

Most GEOVECTOR objects are either dimensionless unit-vectors or position vectors

expressed in meters.

 typedef ECIVECTOR GEOVECTOR;

Refers to a three dimensional vector expressed in the Geographic Earth Centred

frame. The components are stored in the array as [X,Y,Z]; i.e. element 0 = X,

element 1 = Y, element 2 = Z.

IDL: implemented as dblarr(3)

Return to Structures and Enumerations

 Nick Lloyd Page 99 10/26/2012

enum ECI_REFERENCE_FRAME
Identifies the primary velocity reference frames used by the analysis. The purpose is

to provide proper corrections for the aberration of light to different reference frames.

enum ECI_REFERENCE_FRAME{

ECI_SPACECRAFT,

ECI_TOPOCENTRIC,

ECI_GEOCENTRIC

};

IDL:
ECI_SPACECRAFT()

ECI_TOPOCENTRIC()

ECI_GEOCENTRIC()

ECI_SPACECRAFT

Defines the velocity reference frame which is moving with the satellite. This is

the velocity reference frame in which SSC deliver attitude solutions. Most users

will always use this value and accept the error of a few arc seconds.

ECI_TOPOCENTRIC

The velocity of a point at the location of the satellite which is rotating with the

Earth. From an observer on the surface of the Earth this point would appear

stationary.

ECI_GEOCENTRIC

The velocity of the center of mass of the Earth. This is the velocity reference

frame used by the Novas software when calculating apparent positions of stars

and planets.

Return to Structures and Enumerations

 Nick Lloyd Page 100 10/26/2012

enum ODIN_INSTRUMENT
This enumeration indentifies all of the possible instrumentation on board the ODIN

spacecraft.

enum ODIN_INSTRUMENT{

INST_PLATFORM = 1,

INST_ACS = 2,

INST_SMR = 3,

INST_OS = 4,

INST_IR1 = 5,

INST_IR2 = 6,

INST_IR3 = 7,

};

IDL and Matlab:
INST_PLATFORM()

INST_ACS()

INST_SMR()

INST_OS()

INST_IR1()

INST_IR2()

INST_IR3()

Note:

INST_ACDC() has been replaced with INST_ACS(), Version 1.17, 2008-10-02.

Return to Structures and Enumerations

 Nick Lloyd Page 101 10/26/2012

enum ODIN_POINTING_FRAME
This enumeration identifies all of the possible instrumentation unit vectors on board

the Odin spacecraft.

enum ODIN_POINTING_FRAME {

ODIN_X_CF Odin Control Frame X axis.

ODIN_Y_CF Odin Control Frame Y axis.

ODIN_Z_CF Odin Control Frame Z axis.

SMR_X_BORE The sub millimeter bore-sight.

SMR_Y The sub millimeter Y axis close to the Odin Control Frame Y

axis.

SMR_Z The sub millimeter Z axis close to the Odin Control Frame Z

axis.

OS_X_BORE The OSIRIS Optical spectrograph bore-sight, close to the Odin

Control Frame X axis.

OS_Y_HEIGHT The OSIRIS Optical spectrograph height height direction, close

to Odin Control Frame Y direction.

OS_Z_SLIT The OSIRIS Optical spectrograph slit/spatial direction, close to

the Odin Control Frame Z axis.

IR1_X_BORE The OSIRIS IR1 bore-sight, close to the Odin Control Frame X

axis.

IR1_Y_ARRAY The OSIRIS IR1 linear array direction, close to the Odin Control

Frame Y axis.

IR1_Z The OSIRIS IR1 spatial direction, close to the Odin control

Frame Z axis.

IR2_X_BORE The OSIRIS IR2 bore-sight, close to the Odin Control Frame X

axis.

IR2_Y_ARRAY The OSIRIS IR2 linear array direction, close to the Odin Control

Frame Y axis.

IR2_Z The OSIRIS IR2 spatial direction, close to the Odin control

Frame Z axis.

IR3_X_BORE The OSIRIS IR3 bore-sight, close to the Odin Control Frame X

axis.

IR3_Y_ARRAY The OSIRIS IR3 linear array direction, close to the Odin Control

Frame Y axis.

IR3_Z The OSIRIS IR3 spatial direction, close to the Odin control

Frame Z axis.

ST2_X_BORE The bore sight of Star Tracker 2.

ST2_Y_AXIS The Y axis of Star tracker 2. This direction is about 7.1 degrees

wide and is nominally aligned with the tangent height direction.

ST2_Z_AXIS The Z axis of Star tracker 2. This direction is about 9.55

degrees wide and is nominally parallel to the Earth’s horizon.

};

IDL and Matlab:
ODIN_X_CF()

ODIN_Y_CF()

ODIN_Z_CF()

SMR_X_BORE()

SMR_Y()

SMR_Z()

OS_X_BORE()

 Nick Lloyd Page 102 10/26/2012

OS_Y_HEIGHT()

OS_Z_SLIT()

IR1_X_BORE()

IR1_Y_ARRAY()

IR1_Z()

IR2_X_BORE()

IR2_Y_ARRAY()

IR2_Z()

IR3_X_BORE()

IR3_Y_ARRAY()

IR3_Z()

ST2_X_BORE()

ST2_Y_AXIS()

ST2_Z_AXIS()

Return to Structures and Enumerations

 Nick Lloyd Page 103 10/26/2012

enum PLANETARY_BODY
Used to identify different heavenly bodies located within the solar system. The

numbers used here match the body identification numbers used by the NOVAS

Ephemeris package (see NOVAS function solarsystem).

enum PLANETARY_BODY{

PB_MERCURY = 1,

PB_VENUS = 2,

PB_EARTH = 3,

PB_MARS = 4,

PB_JUPITER = 5

PB_SATURN = 6,

PB_URANUS = 7,

PB_NEPTUNE = 8,

PB_PLUTO = 9

PB_SUN = 10,

PB_MOON = 11

};

IDL and Matlab:
PB_MERCURY()

PB_VENUS()

PB_EARTH()

PB_MARS()

PB_JUPITER()

PB_SATURN()

PB_URANUS()

PB_NEPTUNE()

PB_PLUTO()

PB_SUN()

PB_MOON()

Return to Structures and Enumerations

 Nick Lloyd Page 104 10/26/2012

GEODETIC_COORD
Used to define a location using a geodetic (ellipsoidal) earth. The geoid used by

OSIRIS matches the geoid used by SSC, SSC Document SSAK31-7, Odin Operations-

Attitude and Orbit Related Definitions. Note that the GEODETIC_COORD expresses

height in kilometers while ECIVECTOR uses meters.

struct GEODETIC_COORD{

double latitude;

double longitude;

double height;

};

Entries

latitude

The geodetic latitude in degrees, range -90 to +90

longitude

The geodetic longitude in degrees, range 0 to 360.0

height

The height in kilometres above the reference geoid (a.k.a. surface of the Earth).

The reference geoid is,

Equatorial radius of Earth, a = 6378140.0 metres

Reciprocal flattening 1/f = 298.257

This model is from the IAU 1976 geodetic reference spheroid.

IDL:

Implemented as a dblarr(3) = [latitude, longitide, height]

Matlab:

Implemented as a (3x1) array = [latitude; longitude; height]

Return to Structures and Enumerations

 Nick Lloyd Page 105 10/26/2012

IR_L1
Structure that represents the IR Level 1 data .

struct IR_L1{

double mjd;

nxDWORD stw;

double exposureTime;

float temperature;

float tempavg;

nxBYTE detectorid;

nxWORD mode;

nxWORD scienceprog;

nxBOOL shutter;

nxBOOL lamp1;

nxBOOL lamp2;

nxWORD targetIndex;

nxDWORD exceptions;

nxDWORD processingflags;

ONYX_VERSION_STRUCT audit;

IOnyxArray* data;

IOnyxArray* error;

IOnyxArray* flags;

 };

Entries

mjd

The UTC expressed as a Modified Julian Date at the start of the IR exposure. The

time is derived from the satellite time word, which has an intrinsic resolution of

1/16th of a second

stw

The Satellite time word associated with the mjd. Note that the Satellite Time

Word is not guaranteed to be monotonic for the duration of the mission. I.e. it

may reset back to zero depending upon platform requirements.

exposureTime

The IR exposure time in seconds. The exposure time is corrected for any

constant offsets inherent to the read-out-electronics.

temperature

The temperature of the detector in Celsius. This value is determined from a

single read of the A/D converter at the beginning of the exposure.

tempavg

The running average temperature of the detector. The running average is

derived from the average of temperature measurements over the previous “??”

seconds.

detectorid

 Nick Lloyd Page 106 10/26/2012

The Id number of this detector, INST_IR1, INST_IR2 or INST_IR3. All other

values are undefined.

mode

The unique id code of the OSIRIS imaging mode used to collect this data.

scienceprog

The unique id code of the OSIRIS science mode used to collect this data. The

value is related to the overall scientific goal of the current set of measurements.

However the value may change during any given satellite scan as several OSIRIS

scienceprog values are associated with one scientific goal. All calibration

programs which would normally be excluded from standard level 2 processing are

required to set the most significant bit (Bit 15) to 1. All atmospheric science

programs which would be processed by level 2 algorithms are required to have

bit 15 set to 0.

shutter

Indicates the status of the OSIRIS IR shutter. nxFALSE if open, nxTRUE if closed

or moving

lamp1

Indicates the status of the OSIRIS primary calibration lamp. nxFALSE if off,

nxTRUE if on.

lamp2

Indicates the status of the OSIRIS secondary calibration lamp. nxFALSE if off,

nxTRUE if on.

targetIndex

The real-time ACDC target index at the start of the exposure.

exceptions

32 bits of flags used to determine various exceptions that have occurred in

processing. The most significant bit, bit 31, indicates severity. If bit 31 is set

then the record has a serious problem and is probably unusable. If bit 31 is clear

then the record has exceptions but may be usable depending upon context.

processingflags

32 bits of flags used to indicate which processing steps have been applied to the

data. For example data collected with the shutter closed and lamps off do not

have the dark current removed while all other data do have the dark current

removed. All bit fields are currently t.b.d. All definitions require consultation

with level 1 and level 2 IR processing groups.

audit

Records the software/data versioning of this data record. The standard level 1

data processing will guarantee that this value only changes when OSIRIS is

powered off.

data

OnyxDataObject object that provides access to the data array of double[128]

using the ONYX interfaces

 Nick Lloyd Page 107 10/26/2012

error

OnyxDataObject object that provides access to the error array of double[128]

using the ONYX interfaces.

flags

OnyxDataObject object that provides access to the pixel flags array of

nxBYTE[128] using the ONYX interfaces. Each nxBYTE provides 8 bits for t.b.d.

exception flags specific to this pixel. A value of zero means the pixel is good.

Any bit set in the array indicates earlier processing has identified an anomaly

with the associated pixel.

Exception Flags

OSIEX_SERIOUS (0x80000000)

Flags a serious error in the data and indicates that the data should be discarded.

OSIEX_IR_BADDMA (0x00000004)

flags that the IR DMA channel failed in the OSIRIS firmware. Indicates data

corruption

OSIEX_IR_BADUTC (0x00000008)

flags that the UT field (MJD) may be inaccurate. Normally set when processing

raw level 0 before attitude is available

Return to Structures and Enumerations

 Nick Lloyd Page 108 10/26/2012

Modified Julian Date
Modified Julian Date provides a convenient method to store time values. It is used

as the primary storage mechanism for all times in the OSIRIS level 1 database. The

integer part of the Modified Julian Date represents the day number while the

fractional part represents the time of day since midnight.

January 1st 1970 at 00:00:00 UTC is 40587.0 when expressed as a Modified Julian

Date.

Modified Julian Date = Julian Date - 2400000.5

In Matlab:

Matlab Serial Date = Modified Julian Date + 678942.0

Return to Structures and Enumerations

 Nick Lloyd Page 109 10/26/2012

OS_L0
Structure used to represent level 0 data from the OSIRIS optical spectrograph.

struct OS_L0{

double mjd;

nxDWORD stw;

double exposureTime;

float temperature;

nxWORD mode;

nxWORD scienceprog;

nxBYTE roe;

nxBYTE shuttermode;

nxWORD spm_baserow;

nxWORD spm_numrows;

nxBYTE spm_processingMode;

nxWORD targetIndex;

nxDWORD exceptions;

double compressionrate;

nxWORD numcolumns;

nxWORD numrows;

ONYX_VERSION_STRUCT audit;

double neargatedcbias;

double fargatedcbias;

double dark_average[3];

IOnyxArray* data;

IOnyxArray* darkrow;

IOnyxArray* dcbias;

IOnyxArray* crosssection;

IOnyxArray* crosssectionindex;

IOnyxArray* overflowcounter;

};

Entries

mjd

The UTC expressed as Modified Julian Date at time at the start of the OS

exposure. The time is derived from the satellite time word which has an intrinsic

resolution of 1/16th of a second.

stw

The Satellite time word associated with the mjd. Note that the Satellite Time

Word is not guaranteed to be monotonic for the duration of the mission. i.e. it

may reset back to zero depending upon platform requirements.

exposureTime

The OS exposure time in seconds. The exposure time is derived from the

number of ROE ticks multiplied by the ROE exponent. It does not include any

corrections inherent to delays in the read-out-electronics.

temperature

 Nick Lloyd Page 110 10/26/2012

The temperature of the Optical Spectrograph CCD in Celsius. This value is

determined from a single read of the A/D converter at the beginning of the

exposure.

mode

The unique id code of the OSIRIS imaging mode used to collect this data.

scienceprog

The unique id code of the OSIRIS science mode used to collect this data. The

value is related to the overall scientific goal of the current set of measurements.

However the value may change during any given satellite scan as several OSIRIS

scienceprog values are associated with one scientific goal.

roe

The configuration code of the OSIRIS OS CCD read-out-electronics. The pre-

launch values are defined as follows:

0 = 32x1353. No on-chip binning.

1 = 16x1353. On-chip binning of 2 reduces 32 rows to 16.

2 = 8x1353. On-chip binning of 4 reduces 32 rows to 8.

3 = 286x1353. Full CCD including storage area. Used for engineering.

4 = 143x1353. CCD imaging area. Used for engineering.

7 = 2x1353. Obsolete and unsupported mode.

shuttermode

Indicates the mode of the OSIRIS OS shutter.

0 = Close,Open,Close

1 = Closed

2 = Open

spm_baserow

The base row used by OSIRIS in the Science Processing Module to bin the data

off-chip but before transmission to ground.

spm_numrows

The number of rows, spatially binned in the OSIRIS Science Processing Module.

spm_processingMode

The OSIRIS Science Processing Mode. The valid values are; 0 not binned

(1353xn), 1 = spatial binning (1353x1), 2 = McDade & Stegman binning

(849x1), 3 = Llewellyn & Evans binning (11x32).

targetIndex

The real-time ACDC target index at the start of the exposure.

exceptions

32 bits of flags used to determine various exceptions that have occurred in

processing. The most significant bit, bit 31, indicates severity. If bit 31 is set

then the record has a serious problem and is probably unusable. If bit 31 is clear

then the record has exceptions but may be usable depending upon context. All

bit fields (except bit 31) are currently t.b.d. All definitions require consultation

with level1 and level 2 OS processing groups.

compressionrate

 Nick Lloyd Page 111 10/26/2012

The compression rate of the onboad Rice algorithm. Expressed as a number

between 0 and 1. O is 100% compression while 1 represents no compression.

numcolumns

The number of columns (wavelength pixels) in the associated data array.

Currently this value will be 1353, 849 or 11 corresponding to the value given in

spm_processingMode.

numrows

The number of rows (spatial pixels) in the associated data array. This value is

typically 1 for normal science operations but can assume any value between 1

and 286.

audit

Records the software/data versioning of this data record. The Level 0 processing

reserves audit[0]. The value stored is the modified Julian date of the applicable

level 0 software. More details can be found in the audit description.

neargatedcbias

The average value of the 4 columns (2,3,4,5) from the near read-out gate. The

value is in A/D units.

fargatedcbias

The average value o fthe 4 columns (2,3,4,5) from the far read-out gate. The

value is in A/D units.

dark_average[3]

The average value in each dark-row region. Expressed in A/D units.

data

OnyxDataObject object that provides access to the data array of

double[numrows][numcolumns] using the ONYX interfaces

darkrow

OnyxDataObject object that provides access to the darkrow data. The data are

available only when dumping whole images. It is not normally available during

normal scientific programs. The darkrow is an array of double[1353] when

available.

dcbias

OnyxDataObject object that provides access to the entire near and far read-out

gate values. The data are only available when dumping whole images. It is not

normally available during normal scientific programs. The data are stored as an

array of double[numrows][16] using the ONYX interfaces. The first 8 elements

of each row at the near read out gate. The last 8 elements of each row from the

far read out gate.

crosssection

OnyxDataObject object that provides access to 4 slit cross-sections from the

detector. It is only available when the roe mode is 0,1 or 2, and spatial binning

or Stegman binning is enabled. The number of columns depends upon the roe

mode: roe 0 gives 32 columns, roe 1 gives 16 columns and roe 2 gives 8

columns. Spatial binning provides 8 cross-sections. Stegman binning provides 4

 Nick Lloyd Page 112 10/26/2012

cross-sections. The data are stored as an array of double[8 or 4][ncolumns]

using the ONYX interfaces.

crosssectionindex

OnyxDataObject. The index of each column on the CCD in the crosssection

array. It is only valid for spatial binning or Stegman binning. A valid index will be

between 0 and 1352. Spatial binning provides 8 cross-sections. Stegman binning

provides 4 cross-sections. The data are stored as an array of double[8 or

4][ncolumns] using the ONYX interfaces

overflowcounter

OnyxDataObject. An array of bytes of the same dimensions as the data field.

It indicates the number of saturated (overflowed) pixels contributing to spatially

and wavelength binned data elements. A value of zero implies there were no

saturated pixels contributing to the corresponding data element. The array may

be a NULL array which implies there were no overflows in this image. The array

is only available for images which were spatially and/or wavelength binned off-

chip onboard OSIRIS. This field was introduced in May 2001 and may not be

available in older HDF files. It defaults to NULL in those cases.

 Nick Lloyd Page 113 10/26/2012

OS_L1
Structure used to represent level 1 data from the OSIRIS optical spectrograph.

struct OS_L1{

double mjd;

nxDWORD stw;

double exposureTime;

double temperature;

double tempavg;

double opticstemp;

double straptemp;

nxWORD mode;

nxWORD scienceprog;

nxBYTE roe;

nxBYTE shuttermode;

nxWORD spm_baserow;

nxWORD spm_numrows;

nxBYTE spm_processingMode;

nxWORD targetIndex;

nxDWORD exceptions;

nxDWORD processingflags;

nxWORD numcolumns;

nxWORD numrows;

ONYX_VERSION_STRUCT audit;

IOnyxArray* data;

IOnyxArray* error;

IOnyxArray* flags;

IOnyxArray* crosssection;

IOnyxArray* crosssectionindex;

};

Entries

mjd

The UTC expressed as Modified Julian Date at time at the start of the OS

exposure. The time is derived from the satellite time word which has an intrinsic

resolution of 1/16th of a second.

stw

The Satellite time word associated with the mjd. Note that the Satellite Time

Word is not guaranteed to be monotonic for the duration of the mission. i.e. it

may reset back to zero depending upon platform requirements.

exposureTime

The OS exposure time in seconds. The exposure time is corrected for any

constant offsets inherent to the read-out-electronics.

temperature

The temperature of the Optical Spectrograph CCD in Celsius. This value is

determined from a single read of the A/D converter at the beginning of the

exposure.

 Nick Lloyd Page 114 10/26/2012

tempavg

The running average temperature of the OS CCD in Celsius. The running average

is derived from the average of temperature measurements over the previous “??”

seconds. The value is derived from the analysis of OSIRIS housekeeping data.

opticstemp

The temperature of the OSIRIS optics unit in Celsius. The value is derived from

the analysis of OSIRIS housekeeping data.

straptemp

The strap temperature of the OSIRIS optics unit in Celsius. The value is derived

from the analysis of OSIRIS housekeeping data. This value is linearly combined

with the opticstemp to get an effective temperature used for dark current

estimates.

mode

The unique id code of the OSIRIS imaging mode used to collect this data.

scienceprog

The unique id code of the OSIRIS science mode used to collect this data. The

value is related to the overall scientific goal of the current set of measurements.

However the value may change during any given satellite scan as several OSIRIS

scienceprog values are associated with one scientific goal. All calibration

programs which would normally be excluded from standard level 2 processing are

required to set the most significant bit (Bit 15) to 1. All atmospheric science

programs which would be processed by level 2 algorithms are required to have

bit 15 set to 0.

roe

The configuration code of the OSIRIS OS CCD read-out-electronics. The pre-

launch values are defined as follows:

0 = 32x1353. No on-chip binning.

1 = 16x1353. On-chip binning of 2 reduces 32 rows to 16.

2 = 8x1353. On-chip binning of 4 reduces 32 rows to 8.

3 = 286x1353. Not available in level 1. Used for engineering.

4 = 143x1353. Not available in Level 1. Used for engineering.

7 = 2x1353. Obsolete and unsupported mode.

shuttermode

Indicates the mode of the OSIRIS OS shutter.

0 = Close,Open,Close

1 = Closed

2 = Open

spm_baserow

The base row used by OSIRIS in the Science Processing Module to bin the data

off-chip but before transmission to ground.

spm_numrows

The number of rows, spatially binned in the OSIRIS Science Processing Module.

spm_processingMode

 Nick Lloyd Page 115 10/26/2012

The OSIRIS Science Processing Mode. The valid values are; 0 not binned (1353 x

n), 1 = spatial binning (1353 x 1), 2 = McDade & Stegman binning (849x1), 3 =

Llewellyn & Evans binning (11x32).

targetIndex

The real-time ACDC target index at the start of the exposure.

exceptions

32 bits of flags used to determine various exceptions that have occurred in

processing. The most significant bit, bit 31, indicates severity. If bit 31 is set

then the record has a serious problem and is probably unusable. If bit 31 is clear

then the record has exceptions but may be usable depending upon context. All

bit fields (except bit 31) are currently t.b.d. All definitions require consultation

with level1 and level 2 OS processing groups.

processingflags

32 bits of flags used to indicate which processing steps have been applied to the

data. For example data collected with the shutter closed do not have the dark

current removed while all other data do have the dark current removed. All bit

fields are currently t.b.d. All definitions require consultation with level 1 and

level 2 OS processing groups.

numcolumns

The number of columns (wavelength pixels) in the associated data array.

Currently this value will be 1353, 849 or 11 corresponding to the value given in

spm_processingMode.

numrows

The number of rows (spatial pixels) in the associated data array. This value is

typically 1 for normal science operations but can assume any value between 1

and 286.

audit

Records the software/data versioning of this data record. The standard level 1

data processing will guarantee that the audit value only changes when OSIRIS is

powered off. The Level 0 processing reserves audit[0] and the Level 1 processing

reserves audit[1]. The value stored is the modified Julian date of the applicable

level 0 or 1 software. More details can be found in the audit description.

data

OnyxDataObject object that provides access to the data array of

double[numrows][numcolumns] using the ONYX interfaces

error

OnyxDataObject object that provides access to the error array of

double[numrows][numcolumns] using the ONYX interfaces.

flags

OnyxDataObject object that provides access to the pixel flags array of

nxBYTE[numrows][numcolumns] using the ONYX interfaces. Each nxBYTE

provides 8 bits for t.b.d. exception flags specific to this pixel. A value of zero

means the pixel is good. Any bit set in the array indicates earlier processing has

identified an anomaly with the associated pixel. The values are defined below.

 Nick Lloyd Page 116 10/26/2012

crosssection

OnyxDataObject object that provides access to a few slit cross-sections from

the detector. It is only available when the roe mode is 0,1 or 2, spatial binning

is enabled and wavelength binning is disabled. The number of columns depends

upon the roe mode: roe 0 gives 32 columns, roe 1 gives 16 columns and roe 2

gives 8 columns.. The data are stored as an array of double[n][ncolumns] using

the ONYX interfaces.

crosssectionindex

OnyxDataObject object The index of each column on the CCD in the

crosssectionindex array. A valid index will be between 0 and 1352. The data

are stored as an array of nxWORD[n][ncolumns] using the ONYX interfaces.

Exception Flags

OSIEX_SERIOUS (0x80000000)

Flags a serious error in the data and indicates that the data should be discarded.

OSIEX_OS_DUMPRAW (0x00000001)

flags that this data is a diagnostic "full R.O.E." data dump. It is a copy of an

identical image

OSIEX_OS_BADDMA (0x00000004)

flags that the OS DMA channel failed in the OSIRIS firmware and that the data

are probably useless.

OSIEX_OS_BADUTC (0x00000008)

flags that the mjd field may be inaccurate by an indeterminate amount.

Pixel Flags

The following bit values are defined for each element of the flags array.

OSPIX_FLAG_SEVERE (0x80)

The pixel has a severe error and is probably unsuitable for normal scientific

analysis. This flag may appear in conjuction with other pixels.

OSPIX_FLAG_DATAMISSING (0x01)

The pixel has no associated data. This is typically used for regions not sent to

the ground, e.g. the order sorter region from pixel 514 to 649. The flag will

normally appear in conjuction with OSPIX_FLAG_SEVERE.

OSPIX_FLAG_OVERFLOW (0x02)

Flags that at least one constitute CCD pixel had overflowed in the construction of

this data element. It is normally recommended that the user discard this pixel

element. This flag will normally appear in conjuction with

OSPIX_FLAG_SEVERE.

OSPIX_FLAG_OUTLIER (0x04)

Flags that this pixel appears to be an outlier probably due to a radiation hit.

Proceed with caution.

 Nick Lloyd Page 117 10/26/2012

OSPIX_FLAG_UNCALIBRATABLE (0x08)

Flags that the pixel was uncalibratable for some reason. It may or may not occur

with flag OSPIX_FLAG_SEVERE. If it does not occur with

OSPIX_FLAG_SEVERE then the calibration software has adjusted the error bars

on this data point to properly account for the larger uncertainty in the

measurement.

OSPIX_FLAG_RADIATIONHIT (0x10)

Flags that this pixel appears to be an outlier probably due to a radiation hit.

Proceed with caution.

OSPIX_FLAG_NEGATIVEVALUE (0x20)

Flags that this pixel is negative. These pixels cause considerable annoyance for

many applications that takes the log of radiance. Testing for this flag allows class

Osiris_SpectrographScan to easily filter out negative value exposures.

Return to Structures and Enumerations

 Nick Lloyd Page 118 10/26/2012

ODIN_SCAN_DIAGNOSTICS
Structure used to store L2 pre-processing archived diagnostic information. One entry

is created for each scan analyzed. Note that not all scan entries in the OSIRIS

database will have corresponding entries in the archived diagnostic database.

struct ODIN_SCAN_DIAGNOSTICS{

nxDWORD ScanNumber;

IOnyxArray* albedo;

IOnyxArray* albedowavelengths;

IOnyxArray* cloudalt;

IOnyxArray* cloudextinction;

IOnyxArray* clouddetectedtype;

double TH_offset;

double MaxACSAltError;

double MaxACSTimeGap;

nxWORD MinStarsInACSFOV;

double MoonDistToACSFOV;

};

Entries

ScanNumber

A number that uniquely identifies this scan entry. This number is guaranteed to

be identical to the corresponding scan number in the ODIN_SCAN_ENTRY

structure.

albedo

An IOnyxArray expressing the albedo at the wavelengths specified in

albedowavelengths. This array is returned by OSAlbedoCalculationScan.

albedowavelengths

The wavelengths at which the albedo is determined. This array is returned by

OSAlbedoCalculationScan.

clouddetected

Returns an array of flags indicating the possible presence of a cloud in the field of

view, with one entry for each tangent height in the scan. This is the array

returned by OSCloudDetectionScan. Flags defined as follows:

 0 – no cloud

 1 – ‘thin’ cloud

 2 – ‘thick’ cloud

 -9999 – calculation failed.

cloudalt

Returns an array of tangent heights corresponding to the clouddetection and

cloudextinction arrays in meters. This is the array returned by

OSCloudDetectionScan converted to meters.

cloudextinction

 Nick Lloyd Page 119 10/26/2012

Returns an array of calculated cloud extinctions in km-1for each of the tangent

heights in array cloudalt. This is the array returned by OSCloudDetectionScan.

TH_offset

The altitude offset in meters calculated using an RSAS algorithm. This is the

value returned by OSTangentOffsetScan.

MaxACSAltError

Returns the maximum altitude error in meters reported by the ACS. This is the

value returned by OSACSDiagnosticScan.

MaxACSTimeGap

Returns the maximum time gap between ACS measurements reported in the

att/oat files. This is the value returned by OSACSDiagnosticScan.

MinStarsInACSFOV

Returns the minimum stars in the ACS FOV during the scan. This is the value

returned by OSACSDiagnosticScan.

MoonDistToACSFOV

Returns the angular distance of the ACS ST2 from the center of the moon. This is

the value returned by OSACSDiagnosticScan.

 Nick Lloyd Page 120 10/26/2012

ODIN_SCAN_ENTRY
A structure used to represent one scan. A normal aeronomy scan is either the

upward going or downward going section of the satellite nod. However a special

scan type is reserved for stare mode and another type of scan is reserved for

everything not covered by scanning or staring (like astronomy).

struct ODIN_SCAN_ENTRY{

nxDWORD ScanNumber;

double StartMJD;

double EndMJD;

nxWORD ACSState;

nxWORD ACSConfig;

double MinAltitude;

double MaxAltitude;

double ScanRate;

nxSHORT Direction;

}

Entries

ScanNumber

A number that uniquely identifies this scan entry. The first scan of an orbit is

1000 times the orbit number. The scan number increments by 1 for every entry

in the orbit. IDL users should note that this number must be stored in a 32 bit

integer.

StartMJD

The start time of this scan entry expressed as a modified Julian date.

EndMJD

The end time of this scan expressed as a Modified Julian Date. The end time of

one scan is normally identical to the start time of the next scan. Occasionally,

this is not true especially when striding across orbit boundaries or when stallite

attitude information is missing.

ACSState

This indicates the current state of the ACS system. It is one of the following

values: limb scanning 1, limb-staring 2, other 3. We do not support astronomy

modes.

ACSConfig

This field is not properly implemented. It was intended to indicate the type of

scanning being performed by the ACS system. It should be ignored.

MinAltitude

The minimum tangent altitude in km of the spacecraft control frame during the

scan. Note this is approximately 7 km below the OSIRIS spectrograph tangent

altitude.

MaxAltitude

 Nick Lloyd Page 121 10/26/2012

The maximum tangent altitude in km of the spacecraft control frame during the

scan. Note this is approximately 7 km below the OSIRIS spectrograph tangent

altitude.

ScanRate

The scanning rate for up or down scans. It is normally 0.75 km/s. It is undefined

if ACSSTATE <> 1.

Direction

The scan direction. This number is only valid if (ACSState < 3). 1 is up, -1 is

down and 0 is stare.

Return to Structures and Enumerations

 Nick Lloyd Page 122 10/26/2012

OSIRIS_ECMWF
A structure used to store the ECMWF temperature and density profiles for a scan.

struct OSIRIS_ECMWF{

double mjdofscan;

double mjd;

double latitude;

double longitude;

nxDWORD scannumber;

nxDWORD numaltitudes;

IOnyxArray* altitudes;

IOnyxArray* density;

IOnyxArray* temperature;

}

Entries

mjdofscan

This is the mjd at the beginning of the scan and is primarily used for database

lookup purposes.

mjd

The time that represents the geographic location of the corresponding scan. This

time is chosen to be the instant when the OSIRIS spectrograph’s tangent point is

at 30 km +/- 0.01 km. This time is expressed as a modified Julian date.

latitude

The geodetic latitude of the spectrograph tangent point at time mjd. The ECMWF

profile has been extracted at this latitude. The value is expressed in degrees.

longitude

The geodetic longitude of the spectrograph tangent point at time mjd. The

ECMWF profile has been extracted at this longitude. The value is expressed in

degrees.

scannumber

The scan number associated with this record. Normally this number will be

identical to the scan number retrieved from the Level 1 Services at time mjd; it

is possible it can slightly disagree if the attitude for this orbit has been

reprocessed since creation of this record.

numaltitude

The number of elements in the altitudes, density and temperature arrays

altitudes

The array of heights at which density and temperature are produced. The heights

are in meters above the geoid, typically at 500 meter resolution. Note that this is

substantially finer than the ECMWF height sampling.

density

The density profile extracted from the ECMWF model. The density is in

molecules/cm3. The profile frequently has missing values at the top and bottom

 Nick Lloyd Page 123 10/26/2012

of the profile. Missing values are expressed as a negative number (-9999999.0)

and should be ignored by the user.

temperature

The temperature profile extracted from the ECMWF model. The temperature is in

Kelvin. The profile frequently has missing values at the top and bottom o fthe

profile. Missing values are expressed as a negative number (-9999999.0) and

should be ignored by the user.

Return to Structures and Enumerations

 Nick Lloyd Page 124 10/26/2012

QUATERNION
The QUATERNION structure is used to store the 4 component quaternion generated

by the SSC attitude solution.

typedef double[4] QUATERNION;

Return to Structures and Enumerations

 Nick Lloyd Page 125 10/26/2012

ONYX_VERSION_STRUCT
The primary function of OSIRIS Version Control is to provide anaudit trail for both

the end user and the software developer. The OSIRIS database provides a simple

structure, ONYX_VERSION_STRUCT, that provides this information. The structure

is simply an array of 4 double precision numbers. Each number represents one

section of the OSIRIS software:

Array[0]

Corresponds to the version of the OSIRIS level 0 decoding software (DLL). The

double precision number is the time the level 0 Decode software was compiled

and is expressed as a Modified Julian Date. The personnel responsible for level 0

processing will maintain a simple text file indicating which compiled versions are

used during normal processing.

Array[1]

Corresponds to the version of the OSIRIS level 0-1 algorithms applied to the

associated data. The double precision number is the time the level 0-1 software

was compiled and is expressed as a Modified Julian Date. In practice this means

a single instant in time will be associated with all of the level 0 to 1 algorithms:

changing the code in one algorithm will change the version date of all of the

algorithms.

Array[2]

Is not used by level 0-1

Array[3]

Is not used by level 0-1.

Return to Structures and Enumerations

 Nick Lloyd Page 126 10/26/2012

OSIRIS LEVEL 1 API INFORMATION
This document is a summary of the software services that will be provided as part of

the OSIRIS level 1 data products

Software Installation Overview of software installation

Environment Variables Overview of required environment variables

Software Usage Overview of software usage

Software Linking Instructions on linking software to projects

Level 1 Database Overview Quick description of the Odin/OSIRIS database

Ephemeris Calculations Description of ephemeris software

 Nick Lloyd Page 127 10/26/2012

Required Environment Variables

Exported
Environment

Variable

Windows Unix Brief Description

LD_LIBRARY No Yes Loader search path for shareable

objects

LD_LIBRARY_PATH No Yes Loader search path for shareable

objects

ODINCDBDIR Yes

(manual)

Yes Directory path for the ODIN Calibration

Database files

ODINFLIGHTDIR Yes

(Manual)

Yes Directory path for the ODIN flight

duration files.

ODINORBITDIR Yes

(Manual)

Yes Directory search path for the ODIN orbit

duration files.

JPLEPH Yes

(installed)

Yes Full path to the JPL DE200 binary

ephemeride file.

 Nick Lloyd Page 128 10/26/2012

Software Installation
Windows users can obtain pre-compiled binaries from our web site. Linux users or

Windows users requiring access to the source code and headers can download tar-

balls from our web site. The details of the Windows and Linux installations can be

found on the web site

 Nick Lloyd Page 129 10/26/2012

Software Usage
The code is developed using C++ and we expect C programs will be compiled with

the C++ compiler.

We give a code snippet below that outlines the basic skeleton usage of the software

#define NX_INITGUID // only define in one file of each program

#include “odin.h”

int main()

{

 IonyxDatabase* dbase;

 HRESULT status;

 nxLogConsole logger;

 CoInitialize(NULL);

 logger.AddRef();

 InitializeLevel1Services(&logger);

 ... do things

 UninitializeLevel1Services();

 CoUninitialize();

 return 0;

}

The following details should be noted:

1. You must have #define NX_INITGUID in one and only one of your

source files. Failure to omit this may result in the linker not finding

the various GUIDs such as IID_IOnyxDatabase or IID_nxLog.

2. The whole of the osiris/odin project may be included by placing

#include odin.h in your source files. You must call CoInitialize(NULL)

at the beginning of your program

3. You must call CoUninitialize() at the end of your program

4. The Level 1 services communicate errors through the InxLog*

interface. You should pass a pointer to such an object before using

the services so you can detect errors. Note that statically allocated

loggers must have an additional call to AddRef to ensure they never

attempt to self-destruct themselves when released by the Level1

Services or Onyx software.

NOTE: The OSIRIS Level 1 services, Onyx software and HDF libraries are not thread

safe. You should ensure that only one thread of execution ever calls these utilities.

In addition all level 1 service call and Onyx calls must reside within the same thread

of execution.

Return to Odin/OSIRIS Level 1 API

 Nick Lloyd Page 130 10/26/2012

Odin/OSIRIS Level 1 Database Overview
This section will provide an overview of the Odin/OSIRIS Level 1 database. The

Odin/OSIRIS database will ultimately consist of several tens of thousands of files and

may be distributed to several platforms. Portability of individual files is addressed

through the consistent use of HDF. The Level 1 API reads and writes records from

the HDF files using the onyx software developed by University of Saskatchewan.

The database as a single entity is glued together by the Odin/OSIRIS Level 1

services API. The overall paradigm adopted for the API is to treat the database as a

single entity and alleviate the user from the burden of joining files together.

The Odin/OSIRIS level 1 API adopts the following policy for locating files.

1. Each database file will belong to one of three possible groups: Orbital, Flight

or Calibration.

2. Calibration files will be located in one of the directories specified by

environment variable ODINCDBDIR. The API will search the directories in the

order specified in the environment variable. The intent is that all OSIRIS

calibration database (CDB) products will be into this directory tree. It is

expected that the entire calibration database will be on-line at all processing

sites.

3. Flight files will be located in one of the directories specified by environment

variable ODINFLIGHTDIR. The API will search the directories in the order

specified in the environment variable. The intent is that the Flight directories

will contain database metadata which are used as master indices for the rest

of the database. The most notable example is the start and stop time of each

orbit.

4. Orbital files follow a specific naming convention and contain all of the data

for exactly one orbit. Each orbit is assigned a unique number that steadily

increases during the mission (maximum value is about 10,000 for a two year

mission). Each Orbital file will be located in one of the sub-directories of the

directories specified by environment variable ODINORBITDIR. The API will

search the directories in the order specified in the environment variable. In

addition, the API will search a specific sub-directory of each directory. The API

generates a sub-directory name by masking out the bottom 8 bits of the orbit

number and writing the value to a 4 digit hexadecimal string with explicit

leading zeroes. Hence orbit 690 (decimal) is 0x02B2 (hexadecimal) and the

subdirectory is “0200”. The search order is to search the parent directory,

the sub-directory and then search the next directory on the search path. The

API will also search sub-directories labeled “diskxx” where xx is a number

starting with 1 and ascending upwards (eg, 1,2,3). No gaps are allowed in the

ascending sequence.

This policy is reasonably flexible. It allows all data files to be located across multiple

disk partitions. It also allows users to search their own personal directories before

searching standard directories. The usage of orbital sub-directories avoids

generating directories with thousands of entries, which can slow many systems. The

extra level of hashing provided by the sub-directories should keep the system very

responsive as no directory will have more than a thousand (or so) files.

 Nick Lloyd Page 131 10/26/2012

Return to ODIN/OSIRIS Level 1 API

 Nick Lloyd Page 132 10/26/2012

Ephemeris Calculations
The Odin/OSIRIS Level 1 API calculate ephemeris data using the U.S. Naval

Observatory’s NOVAS software which in turn calls the JPL Lunar and Planetary

Ephemerides. We assume that the JPL DE200 ephemerides for the period 1980 to

2040 AD are available at each site. Each site is responsible for the installation of this

software although we can provide limited assistance. To help software portability we

demand that all sites define an environment variable JPLEPH with the intent that this

environment variable will indicate the full path to the binary DE200 ephemeride file.

Version 2.0 of the NOVAS software has been used while the JPL ephemeris code is

only available as Fortran. The NOVAS software is compiled “as is” but the JPL code

must be modified for each platform so it can access the JPL DE200 ephemerides.

For the Windows NT version of the JPL ephemeris we have done the following:

1. Broken file testeph.f so that the main testeph program module is separated from

the subroutines. The subroutines are stored in a file called pleph.f. The main

test program is stored in testeph.f

2. The NREC variable is set to 4 in functions FSIZERx

3. Implemented function FSIZER3 in the subroutine STATE

4. Fetch the Direct Access Ephemeride Filename from a Environment variable called

JPLEPH

5. Included a Microsoft Fortran attribute in subroutine PLEPH that exports the

subroutine PLEPH as a “C” subroutine compatible with definition in NOVAS (ie.

underscore prefix, lowercase, no stack decoration, i.e. _pleph)

6. Built the subroutines as a Windows DLL and the DLL placed on the system search

path, i.e. environment variable PATH.

7. Verified the integrity of the build by running the testeph program.

All of these changes are “permitted” by the JPL software installation.

The NOVAS software uses TDT and TDB time scales. The Odin level 1 services will

convert UTC to TDT and TDB to an accuracy no better than 2 seconds. This will

introduce pointing errors of the order of hundredths or thousandths or arc seconds.

A requirement for higher accuracy would introduce significant maintenance of time

scale conversion tables. Details of time scales and conversion can be found in

section L of the Astronomical Almanac.

The NOVAS software can be obtained from http://www.usno.navy.mil

In earlier releases of this document we noted that the value of const double f in

subroutine terra was inconsistent with the IAU 1976 Geoid as used by SSC. After

discussion with personnel from the USNO we have established that the value of f =

0.00335281 used in the NOVAS software is the correct value and we use the novas

code as is.

We note that the NOVAS software has a namespace conflicts with the nxlib package.

In particular odin.h invokes nxlib.h which includes nxmath.h which defines macro

TWOPI. This macro conflicts with a definition in novas. We have disabled the

http://www.usno.navy.mil/

 Nick Lloyd Page 133 10/26/2012

nxmath version of TWOPI when compiling the novas software to ensure the highest

degree of compatibility with novas. Both versions specify TWOPI to more than 15

decimal places.

Return to Odin/OSIRIS Level 1 API

 Nick Lloyd Page 134 10/26/2012

Source Code Control
The Odin/OSIRIS level1 services API is now kept under source code control. We use

Subversion at https://vidarr.usask.ca/svn/Repos_OSIRIS/. A low security, read-only

account odin (with password hugin) can be used to access the repository

We shall release new versions of the Odin/OSIRIS level 1 services on specific dates

and these dates will be tracked below. This document will be regarded as the master

authority

Release

Date

Software RCS

Label

Comments Version ID Document

Version

1999-09-24 V1999_09_24 Alpha 0x0000 1.6

2002-01-23 V2002_01_23 Beta 0x0001 2.4

2002-03-06 Beta 2.5

2002-06-24 V2002_06_24 Beta V 1.03 2.6

2003-06-27 Released V 1.06 2.8

2005-01-14 Released V 1.08 2.9

https://vidarr.usask.ca/svn/Repos_OSIRIS/

 Nick Lloyd Page 135 10/26/2012

Areas still requiring definition or clarification
 Ray tracing code in LOSTangentPoint and LOSEntrancePoints is yet to be

implemented.

 isrectangular in DefineFOVSearch is yet to be implemented

 Define operating modes

 Define science programs

 Define ACDC modes

 GetScienceProgram and GetOperatingMode just return dummy values

 Description of filename scheme and directory structure

 Nick Lloyd Page 136 10/26/2012

Document Update History

Version 1.4
1. Added function GetGeoFromOrbitAngle

Version 1.5
1. Removed field spm_normalization from structure OS_L1 as new firmware has

eliminated this issue.

2. Removed changes to Earth flattening factor in NOVAS software as USNO clarified

the accuracy.

3. Changed definition of GetFOVSize to account for rectangular field of view.

4. Changed GetStarsInFOV to account for rectangular field of view

5. Changed GetPlanetInFOV to account for rectangular field of view

6. Changed CFToECI to account for light aberration effects.

7. Added enumeration ECI_REFERENCE_FRAME

8. Added functions InitializeLevel1Services and UninitializeLevel1Services.

9. Changed enum ODIN_POINTING_FRAME so it indicates it orientation with

respect to the spacecraft control frame.

Version 1.6
1. Added section of Source Code Control

2. Added section on Software installation

3. Added section Environment Variables

4. Added Section on level 1 Database Overview

5. Added InitializeLevel1Services

6. Added UninitializeLevel1Services

7. Added GetLevel1Version

8. Added GetInstrumentXandYECI

9. Added GetStarsInInstrumentFOV

10. Added GetPlanetInInstrumentFOV

Version 1.7
1. Added STW To UTC conversion functions, StwLocateResetEpoch,

StwUsesFixedResetEpoch and StwToUtc.

Version 1.8
1. Changed shutter definition in OS_L1 so it is in accordance with data files.

2. Changed description of scienceprog in OS_L1 so it has no constraints on the

upper bit.

3. Introduced the slixsect and slixsectcolumnindex fields into the OS_L1

structure. These record the CCD slit cross sections voted on in December

2000.

4. Added definition of OS_L0.

 Nick Lloyd Page 137 10/26/2012

Version 1.9
1. Changed definition of OS_L0

Version 2.0
1. New linux installation procedure.

2. Added section on Software Usage.

3. Added section on Software Linking.

4. Added CDBGen_OS_PointSpread.

5. Added CDBGen_OS_ReferenceSpectrum.

6. Changed CDBGen functions to accommodate modes that have more than one

row of data.

7. Added GetScanInfo.

8. Made multiple changes to make documentation consistent with software.

Version 2.1
1. Removed highres option from CDBGen_OS_ReferenceSpectrum.

2. Added GetSolarAngles.

Version 2.2
1. Changed CDBGEN_OS_FlatFieldResponsivity

2. Added CDBGEN_OS_XSectionFlatField

3. Changed definition of OS_L1

Version 2.3
1. Changed CDBGen_OS_Wavelength

2. Changed GetScanInfo

3. Changed almost all of the CDGBGEN_*** functions.

Version 2.4
Lots of tidying up.

Added ECItoOrbitalPlane

Version 2.5
 Modified CDBGEN_OS_ReferenceSpectrum interface definition.

 Added CDBGen_Molecule_CrossSection

Version 2.6
 Added GEOToECI, ECIToGEo, GeodeticToGeo, GeoToGeodetic

OrbitalPlaneToECI and defined typedef GEOVECTOR

 Nick Lloyd Page 138 10/26/2012

Version 2.7
 Changed error in documentation of enum ODIN_ISNTRUMENT

Version 2.8
 Minor updates to reflect supported compilers and document history.

Version 2.9
 Added description of ODIN_SCAN_ENTRY

Version 2.10
 Changed dark current description in CDBGEN_OS_DARKCURRENT

Version 2.11
 Added function GetOsirisEcmwf

Version 2.12
 Added descriptions of the audit fields

Version 2.13
 Added GetOSSlitCurvature

 Added GetPixelCFUnitVectorExt and deprecated GetPixelCFUnitVector

Version 2.14
 Added Matlab documentation

Version 2.15
 Modified CDBGEN_OS_REFERENCESPECTRUM so it returns

Photons/cm2/sec/ster/nm rather than Watts/m**2/nm

Version 2.16
 Added function GetAttitudeError to source code and documentation

Version 2.17
 Modified Matalb Onyx code so it reads the audit field correctly

 Added support for flat-field calibration using atmospheric calibration

 Nick Lloyd Page 139 10/26/2012

Version 2.18
 Added GetScanDiagnostics

 Added ST2_X_BORE and ST2_Y_BORE so we can get the control frame

coordinates of star tracker 2.

Version 2.19
 Added strap temperature to OS_L1 structure

Version 2.20
 Updated document to match software version 2.02. Changes mostly in return

values of CDBGEN_XXXX functions

Version 2.21
 Removed ancient installation instructions.

Version 2.23
 Added OSIRISAvgTemperature

 Added BlankOutRadiationHitPixels

 Added GetUVPSF

 Added a couple of pixel flag exceptions.

