Source code for LOTUS_regression.predictors.seasonal

import numpy as np


[docs]def add_seasonal_components(basis_df, num_components): for column in basis_df: n_harmonic = num_components.get(column, 0) for i in range(n_harmonic): basis_df[column + '_sin' + str(i)] = basis_df[column] * np.sin(2*np.pi * (basis_df.index.dayofyear-1) / 365.25 * (i+1)) basis_df[column + '_cos' + str(i)] = basis_df[column] * np.cos(2*np.pi * (basis_df.index.dayofyear-1) / 365.25 * (i+1)) return basis_df