skretrieval.retrieval package¶
Submodules¶
skretrieval.retrieval.airdensity module¶
- 
class skretrieval.retrieval.airdensity.AirDensityRetrieval(air_species: sasktran.species.Species, ret_wavel=350, high_alt_normalize=False, tikh_factor=1)¶
- Bases: - skretrieval.retrieval.RetrievalTarget- Limb retrieval for air number density. Radiances should be supplied in the RadianceGridded format. - 
apriori_state()¶
- Returns
- Apriori state vector, x_a. If no apriori is used return None 
- Return type
- np.array 
 
 - 
inverse_apriori_covariance()¶
- Returns
- Inverse of the apriori covariance matrix. If no apriori is used return None. 
- Return type
- np.array 
 
 - 
measurement_vector(l1_data: skretrieval.core.radianceformat.RadianceBase)¶
- The measurement vector is the logarithm of radiance at ret_wavel 
 - 
state_vector()¶
- State vector is the logarithm of air number density 
 - 
temperature(hires_spacing=100, T0=200, earth_radius=6372000)¶
- Integrates the air number density using hydrostatic balance and the ideal gas law. - Parameters
- hires_spacing (float, optional) – Internal high resolution spacing to use for the integral. Default 100 m 
- T0 (float, optional) – Upper altitude pin temperature, this is at self._retrieval_altitudes[-1]. Default 200 K 
- earth_radius (float, optional) – Earth radius in m, necessary to approximate gravity. Default 6372000 
 
- Returns
- Temperature in K on self._retrieval_altitudes 
- Return type
- np.array 
 
 - 
update_state(x: numpy.ndarray)¶
- Updates the state for the new state vector. Note that this change has to propagate backwards to the ForwardModel somehow. Typically this is done by passing a climatology into the RetrievalTarget at initiliazation which is used in the ForwardModel. - Parameters
- x (np.array) – New state vector 
 
 
- 
skretrieval.retrieval.ozone module¶
- 
class skretrieval.retrieval.ozone.OzoneRetrieval(ozone_species: sasktran.species.Species)¶
- Bases: - skretrieval.retrieval.RetrievalTarget- 
apriori_state()¶
- Returns
- Apriori state vector, x_a. If no apriori is used return None 
- Return type
- np.array 
 
 - 
inverse_apriori_covariance()¶
- Returns
- Inverse of the apriori covariance matrix. If no apriori is used return None. 
- Return type
- np.array 
 
 - 
measurement_vector(l1_data: skretrieval.core.radianceformat.RadianceBase)¶
- Parameters
- l1_data (RadianceBase) – Radiance data. Usually this is an instrument specific instance of RadianceBase, and the RetrievalTarget only works with specific formats. 
- Returns
- Keys ‘y’ for the measurement vector, ‘jacobian’ for the jacobian of the measurement vector (if weighting functions are in l1_data, ‘y_error’ the covariance of ‘y’ (if error information is provided in l1_data) 
- Return type
- dict 
 
 - 
state_vector()¶
- Returns
- The state vector, x 
- Return type
- np.array 
 
 - 
update_state(x: numpy.ndarray)¶
- Updates the state for the new state vector. Note that this change has to propagate backwards to the ForwardModel somehow. Typically this is done by passing a climatology into the RetrievalTarget at initiliazation which is used in the ForwardModel. - Parameters
- x (np.array) – New state vector 
 
 
- 
skretrieval.retrieval.rodgers module¶
- 
class skretrieval.retrieval.rodgers.Rodgers(max_iter=10, lm_damping=0, iterative_update_lm=False, retreat_lm=False, lm_change_factor=1.5, convergence_factor=1)¶
- Bases: - skretrieval.retrieval.Minimizer- 
retrieve(measurement_l1, forward_model: skretrieval.retrieval.ForwardModel, retrieval_target: skretrieval.retrieval.RetrievalTarget)¶
- Parameters
- measurement_l1 (RadianceBase) – The data we are trying to match, either from a real instrument or simulations. 
- forward_model (ForwardModel) – A model for the data in measurement_l1 
- retrieval_target (RetrievalTarget) – What we are trying to retrieve 
 
- Returns
- Various parameters specific to the minimizer 
- Return type
- dict 
 
 
- 
skretrieval.retrieval.tikhonov module¶
- 
skretrieval.retrieval.tikhonov.two_dim_horizontal_second_deriv(numangle, numalt, factor=1, sparse=False)¶
- Calculates the second derivatvie Tikhonov regularization matrix for a two dimensional uniform grid. The matrix is calculated assuming that the measurement vector is constructed with altitude being the leading dimension - Parameters
- numangle (scalar) – The number of angular grid points 
- numalt (scalar) – The number of altitude grid points 
- factor (scalar or vector length numangle, optional) – If scalar, the resulting matrix is multiplied by this value. If a vector of length numangle, then each angular level is multiplied by the corresponding value. Default is 1 
 
 
- 
skretrieval.retrieval.tikhonov.two_dim_vertical_first_deriv(numangle, numalt, factor=1, sparse=False)¶
- Calculates the first derivatvie Tikhonov regularization matrix for a two dimensional uniform grid. The matrix is calculated assuming that the measurement vector is constructed with altitude being the leading dimension - Parameters
- numangle (scalar) – The number of angular grid points 
- numalt (scalar) – The number of altitude grid points 
- factor (scalar or length numalt, optional) – If scalar, the resulting matrix is multiplied by this value. If a vector of length numalt, then each altitude level is multiplied by its corresponding factor. Default is 1 
 
 
- 
skretrieval.retrieval.tikhonov.two_dim_vertical_second_deriv(numangle, numalt, factor=1, sparse=False)¶
- Calculates the second derivatvie Tikhonov regularization matrix for a two dimensional uniform grid. The matrix is calculated assuming that the measurement vector is constructed with altitude being the leading dimension - Parameters
- numangle (scalar) – The number of angular grid points 
- numalt (scalar) – The number of altitude grid points 
- factor (scalar or length numalt, optional) – If scalar, the resulting matrix is multiplied by this value. If a vector of length numalt, then each altitude level is multiplied by its corresponding factor. Default is 1 
 
 
Module contents¶
- 
class skretrieval.retrieval.ForwardModel¶
- Bases: - abc.ABC- A ForwardModel is an object which is capable of calculating a radiance. This serves as the primary interface to the retrieval, along with the RetrievalTarget. - 
abstract calculate_radiance()¶
 
- 
abstract 
- 
class skretrieval.retrieval.Minimizer¶
- Bases: - abc.ABC- A class which performs minimization between some aspect of measurement level1 data and the forward model simulations. - 
abstract retrieve(measurement_l1: skretrieval.core.radianceformat.RadianceBase, forward_model: skretrieval.retrieval.ForwardModel, retrieval_target: skretrieval.retrieval.RetrievalTarget)¶
- Parameters
- measurement_l1 (RadianceBase) – The data we are trying to match, either from a real instrument or simulations. 
- forward_model (ForwardModel) – A model for the data in measurement_l1 
- retrieval_target (RetrievalTarget) – What we are trying to retrieve 
 
- Returns
- Various parameters specific to the minimizer 
- Return type
- dict 
 
 
- 
abstract 
- 
class skretrieval.retrieval.RetrievalTarget¶
- Bases: - abc.ABC- The retrieval target defines the parameter that is to be retrieved, and also what measurements are going to be used to retrieve it. Notation is similar to that of Rodgers. - 
adjust_parameters(forward_model, y_dict, chi_sq, chi_sq_linear, iter_idx, predicted_delta_y)¶
 - 
abstract apriori_state() → numpy.array¶
- Returns
- Apriori state vector, x_a. If no apriori is used return None 
- Return type
- np.array 
 
 - 
abstract inverse_apriori_covariance()¶
- Returns
- Inverse of the apriori covariance matrix. If no apriori is used return None. 
- Return type
- np.array 
 
 - 
abstract measurement_vector(l1_data: skretrieval.core.radianceformat.RadianceBase)¶
- Parameters
- l1_data (RadianceBase) – Radiance data. Usually this is an instrument specific instance of RadianceBase, and the RetrievalTarget only works with specific formats. 
- Returns
- Keys ‘y’ for the measurement vector, ‘jacobian’ for the jacobian of the measurement vector (if weighting functions are in l1_data, ‘y_error’ the covariance of ‘y’ (if error information is provided in l1_data) 
- Return type
- dict 
 
 - 
static measurement_vector_allowed_to_change()¶
- Returns
- True if the measurement_vector may change shape between iterations, False otherwise. 
- Return type
- bool 
 
 - 
abstract state_vector()¶
- Returns
- The state vector, x 
- Return type
- np.array 
 
 - 
static state_vector_allowed_to_change()¶
- Returns
- True if the state vector/apriori may change shape between iterations, False otherwise. 
- Return type
- bool 
 
 - 
abstract update_state(x: numpy.ndarray)¶
- Updates the state for the new state vector. Note that this change has to propagate backwards to the ForwardModel somehow. Typically this is done by passing a climatology into the RetrievalTarget at initiliazation which is used in the ForwardModel. - Parameters
- x (np.array) – New state vector 
 
 
-